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Abstract

In order to understand biological systems as well as to design
artificial systems, it is important to clarify the principle by
which multidegrees of freedom can be coordinated under
changeable constraints of the environment. We proposed
that bipedal locomotion is realized as a global limit cycle
generated through global entrainment between the neural
system composed of neural oscillators and the physical sys-
tem [15]. In the present paper the walking movement is
shown to be robust against spatio-temporal changes in envi-
ronmental constraints such as mechanical perturbations and
irregular terrain. Furthermore we demonstrate that synchro-
nization occurs between two walking bipeds through simple
interaction by means of an analysis of a phase response curve
and also show it by computer simulation. This implies that
the principle of global entrainment is applicable to multilo-
comotor systems.

1 Introduction

Complexity in biological systems comes from their
heterogeneous structure and intrinsic dynamics. The func-
tional or ordered behavior of the system appears only when
coordination among heterogeneous elements is established.
Moreover, biological systems have to adapt to an environ-
ment which is changeable and unpredictable. This suggests
that the essence in biological systems is not in any definite
order as is seen in conventional artificial systems but in the
ability to generate emergent order. The generation of sponta-
neous order has been studied typically in physical systems
such as self-organizing processes [5](11). These studies are,
however, restricted to almost uniform systems with fixed
constraints. Elucidation of the principle by which the hetero-
geneous elements can be brought into proper relation in a
changeable environment is a challenging problem not only in
biological studies but also in engineering studies for design
of autonomous decentralized systems (ADS).

0-8186-3125-2/93 $03.00 © 1993 IEEE

199

The typical example of flexibility and stability of bio-
logical systems in a changeable environment is seen in loco-
motion. According to neurophysiological studies, locomo-
tor systems are characterized as a kind of ADS. The rhyth-
mic movements of limbs are coordinated by coupled neural
oscillators in the spinal cord, each of which controls groups
of closely synergistic muscle [4]. Moreover the drastic
change in gait pattern of a decerebrate cat on a treadmill by
electrical stimulation to the midbrain [10](14] indicates that
complex behavior can be controlled by a simple type of sig-
nal from the higher center of the brain.

Motor pattern generation in animals and humans have
been theoretically studied at the phenomenological [13], the
neural [3](7](8](19] and the biomechanical [9][17] levels.
However, no theoretical studies have clarified how the mo-
tor pattern is generated through the interaction of neural,
musculo-skeletal, and sensory systems to adapt to the envi-
ronment.

We proposed global entrainment between the neural
system and the physical system as a principle of self-organ-
ized control of motor systems in an unpredictable environ-
ment [15]. By computer simulation it was shown that bi-
pedal locomotion is stably and flexibly performed as a
global limit cycle generated by global entrainment between
the rhythmic activities of the neural system composed of
coupled neural oscillators and the rhythmic movements of a
musculo-skeletal system interacting with its environment.
Moreover, it was shown that a gradual change in speed of
locomotion induces a drastic transition of the gait pattern
between walking and running with hysteresis.

In the present paper we investigate the stability and
flexibility of the global limit cycle generated in the model of
bipedal locomotion when spatio-temporal changes in envi-
ronmental constraints occur. Furthermore, applying the
principle of global entrainment to multilocomotor systems,
we demonstrate that two bipeds can be coordinated to walk
synchronously by means of simple interaction.



2 The Model of Bipedal Locomotion
2.1 The outline of the model

Figure 1 shows the structure and information flows of
our model. The physical system, which can be compared to
our musculo-skeletal system, moves according to its own
dynamics under the constraints of the environment and
motor signals from the neural system. The neural rhythm
generator composed of coupled neural oscillators generates
motor signals to coordinate many degrees of freedom of the
physical system. From the sensory signals which indicate
the current state of the physical system and the environ-
ment, relevant signals are chosen and sent to the neural
rhythm generator in an appropriate way. This reciprocal
flow of information between the physical system and the
neural rhythm generator enables the flexible generation of
locomotor movement in a changeable environment. With
global changes in the level of activity of the neural rhythm
generator, the higher center controls the behavior of the
whole system in a nonspecific way.
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Fig.1 Model for locomotor control.

2.2 Physical system and environment

The physical system consists of an interconnected
chain of rigid links in the sagittal plane, as shown in Fig.2.
A leg is composed of a thigh and shank. A head repre-
sented by a point mass is attached to the hip joint. Nonlin-
ear friction forces are assumed in the hip and knee joints,
and elastic forces restrict bending of the joint in the knee.
The reaction force from the ground is modeled as a two-
dimensional spring and damper. Each time the ankle
touches the ground, the resting position of the spring is as-
sumed to be reset to the point at which the ankle first
touches. To simulate locomotion over uneven terrain, the
profile is set up on the sagittal plane such that the height of
the terrain changes along the horizontal direction.

The equations of motion for the musculo-skeletal sys-
tem are derived by means of the Newton-Euler method.

The general form of the equations may be written as

X = P)F+Q(x X, Te(y).Fg (x,X)) + M

where x is a vector of the inertial positions and angles of the
links; P is a matrix; F is a vector of constraint forces; Q is a
vector; T, is a vector of torques; F, is a vector of forces on
meanklewhlchdependon mestateofmetumn andyisa
vector of the output of the neural rhythm generator.

To obtain the constraint forces, we differentiate the
equations of kinematic constraints twice with respect to
time. They can be written in the general form:

CxX =D (x,x ) 1))

where C is a matrix and D is a vector.
By eliminating F from (1) and (2), we get

X = PEOICEPOT .
[D(x,X}-C(X)Q(x X v'l:f(y)vFl (xrx))]
+Q(x X .Tr(y)»Fz (X ,X)) (3)
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Fig.2 The structure of the model of a biped. The motor signals from
the neural rhythm generator on the left side induce torques acting at
the joints of the left leg. The pathways of sensory signals from the
physical system to the neural rthythm generator on the right side are
shown.



We are able to obtain the motion of the physical sys-
tem, provided that the output of the neural rhythm gen-
erator y is given.

2.3 Neural system

One of the simplest models of a neural network gener-
ating oscillatory activity consists of two tonically excited
neurons, with the adaptation or self-inhibition effect,
linked reciprocally via inhibitory connections [8). This
model generates a stable limit cycle for a set of parame-
ters. By the use of the neural oscillator model as an unit
oscillator, a neural rhythm generator, composed of six
unit oscillators, for bipedal locomotion is constructed as
illustrated in Fig.2. Each unit oscillator induces a torque
at a specific joint. The two neurons of each unit oscillator
alternately induce torques in opposite directions. It is as-
sumed that the torque generated at the joint is propor-
tional to the output of the neurons.

The neural system is represented by the following dif-
ferential equations:

Tilki = —Ui+ ﬁ wijyj it uo i+Feedi (x X ,Fg(x,X))
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where u; is the inner state of the ith neuron; y, is the output
of the ith neuron; v, is a variable representing the degree of
the adaptation or self-inhibition effect of the ith neuron; u,,
is a signal from the higher center; w; is a connecting weight;
t.and T, are time constants of the inner state and the adap-
wation effect respectively; and F,_, is a sensory signal.

In this model, we postulate explicit represeatations of sen-
sory signals of inertial angles of the thigh and the shank,
angular velocities of the shank, and somatic senses of mak-
ing contact with the ground. Figure 2 illustrates the path-
way of sensory signals to each unit oscillator. The design of
the processing of sensory signals is mainly based on a
simple mechanism, which is an extended form of the stretch
reflex for a single joint. This is also functionally extended
to the interjoint pathways of sensory signals, which are
important for generating appropriate phase relationships
among the joints. The signals of the somatic sense are used
for modulating the signals of the inertial angles.

2.4 Method of computer simulation

By computer, equations (3) and (4) are numerically in-
tegrated using the fourth-order Runge-Kutta-Gill method.
The inverse matrix in eq. (3) is solved using the Gauss-Jor-
dan method. Given a certain set of initial conditions and a
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Fig3 The response of the biped against a mechanical perturbation. A force of 280N in the forward direction is applied to the head for 0.2
s. The arrows indicate the time when a mechanical perturbation is applied. A The walking movement of the biped. The stick figure is
traced every 0.1 s. B The activity of the neural thythm generator. Each inner state of neuron «; is shown. C Time courses of stride length
and stride cycle duration ( walking period ). The stride length is the distance between successive contact points of the same leg with the

ground.



function describing the terrain, our bipedal model gener-
ates locomotion as a completely autonomous system. The
following section show the results of our simulation.

3 Robustness against Environmental Changes
3.1 Mechanical perturbation during walking

Mechanical perturbations to a part of the body during
walking over flat level terrain were examined. Given a set
of initial conditions, the system asymptotically converges
to a steady state of walking. Afterwards a perturbation is
applied to the head of the biped in the forward direction.
Figure 3 shows an example of simulated motion of the
biped and activity of the neural rhythm generator. The re-
sults demonstrate that the system returns to steady walking
within a few step cycles after the instantaneous perturba-
tion. The stability is attributed to the orbital stability of the
global limit cycle generated through global entrainment
between the neural rhythm generator and the physical sys-
tem. The biped fell down for such a large perturbation as
that which forces the system to move beyond the separatrix
of the stable limit cycle.

To investigate the effect of perturbation on the phase of
locomotor cycle, phase transition curves ( PTC ) [16] are
measured. Figure4A shows the method by which to obtain
a PTC. In the steady state of walking we define phase ¢ as
¢=t/T(mod 1), where ¢ is the time from the instance the
right foot touches the ground; T is the period of one step
cycle. As shown in Fig.4A, a perturbation is applied at ¢
which we call the old phase. After the system returns to the
steady state, the i-th phase advance o, converges to 6. We
define the new phase as ¢'=¢+0. The PTC is represented as
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Fig.4 A Definition of phase transition curve ( PTC ). The upper
trace shows the regular rhythm in the steady state of walking. The
abscissa scales the time. The vertical bars indicate the instance at
which the right leg of the biped touches the ground. The lower
trace shows the perturbed locomotion. A perturbation is applied at
¢, which is called the old phase. The old phase ¢ added by the
phase delay o makes the new phase ¢'. B PTCs for mechanical
perturbations applied to the head of the biped in the forward direc-
tion for 0.2 sec. The black and grey lines show the PTCs for forces
of 200N and 280N respectively.
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Figure 4B shows PTCs obtained in cases of perturba-
tions applied to the head of the biped in the forward direc-
tion. When the perturbation is weak, the new phase is de-
layed slightly at every value of the old phase. By contrast,
the new phase is advanced when the perturbation is strong.
In this case the degree of advancement of the new phase in
the single support phase of locomotion is larger than that in
the double support phase. These results indicate that the dy-
namical stability of the limit cycle changes according to the
strength and timing of perturbations.

3.2 Locomotion over uneven terrain
The behavior of the biped was investigated when the en-

vironmental constraints were changed. The stability against
environmental changes is attributed to the structural stabil-
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Fig.5 Walking movements over uneven terrain. The stick figures of
walking movements and the time courses of the stride length and
the stride cycle duration are shown. The stick figures are traced
every 0.2 s. A Uphill (9% ). B Downhill ( -14% ). C Uphill (9% )
+downhill (9% ). D Terrain with a sinusoidal wave pattern ( wave
length: 8m; amplitude: 16cm ). E Iregular terrain.



ity of the global limit cycle generated through interaction
with the environment. We demonstrate how our biped gen-
erates stable locomotion over various kinds of terrain with-
out any control specific to the environment.

Figures 5A and B show uphill and downhill walking. In
the steady state of walking on a flat terrain, the terrain sud-
denly changes. However, the biped can continue to walk.
The upper and lower limits of the slope that the biped could
walk on were +10 % and -15%, respectively. Figure 5C
shows walking over the hill. The movement of the legs
clearly demonstrates that the stride length is automatically
changed when the slope of the hill changes.

Figure 5D shows an example of walking over a terrain
with a sinusoidal wave pattern. Various kinds of sinusoidal
wave patterns are examined. The biped can walk stably
under the condition that the spatial frequency is sufficiently
low compared to the step length of the biped. In other
words, the biped is stable against not rapid but slow
changes in the environment.

Figure SE shows an example of walking over irregular
terrain. As in the case mentioned above, the biped does not
fall down against a slowly changing terrain.

4 Coordination between two Bipeds

Everyone has experienced the unconscious synchroni-
zation of stepping motion when walking with another per-
son. This phenomenon would be a typical example of mu-
tual entrainment in personal communication. Perhaps this
coordination is based on visual information. In this chapter
we demonstrate a model of synchronization of walking as
shown in Fig.6. The higher center is considered to be the
coordinator with other bipeds in that dynamic changes in
state originate here according to signals from other bipeds.
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Fig.6 A schematic illustration of the model of coordination be-
tween two bipeds

4.1 Stability of phase relationship between identi-
cal bipeds

To realize synchronized walking we assume that a
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biped can perceive information on the timing of stepping
movement of the other system. The phasic signal is expected
to be responsible for phase locking between the bipeds. The
higher center of each biped is assumed to generate a pulse
signal at the instance the leg of the other biped touches the
ground and sends it to the hip oscillators appropriately.

Effects of pulse signals to the neuron of the hip oscillator
on the locomotor phase were examined and we obtained a
PTC as shown in Fig.7A. Using the single PTC we can ex-
amine the stability of the coordination between the identical
bipeds when they interact with each other. The stability cri-
terion is shown in [18]. Figure 7B shows that in-phase rela-
tionship is the only stable state. Through computer simula-
tion we obtained synchronized walking between the identi-
cal bipeds.

Flg.7A PTC for pulse to the flexor neuron of the hip oscillator. B
Graphic solution of equilibrium point of phase relationship. The
black and gray lines are derived form the PTC. The intersections
show equilibrium points. The point at ¢, = ¢, = 0.0 is a stable equi-
librium point.

4.2 The model of coordination between bipeds with
slightly different character

In order that two bipeds with the same structure and
siightly different parameters walk side by side, further infor-
mation processing will be needed because they have not
only different phases of stepping movements but also differ-
ent positions and speeds in the horizontal direction when
there is no interaction between them. In addition to the pulse
signal responsible for phase locking, we assume that the dif-
ferences in position and speed between the two bipeds in
the horizontal direction are perceived and utilized for reduc-
ing the difference of step length between them. The steady
input from the higher center to the hip oscillators changes
according to the following differential equations:

foﬁowl = Cl(IAan')'*CiX.Az‘iu) 0)
Tolloaip2 = Ci(Xa1-Xa 1)+Cz(i:. 1Xa2)

where ., and u,,._, are the input signals of each biped
from the higher center to the hip neural oscillator; x, , and
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the conventional control theory, in which control systems
and controlled systems are strictly separate and therefore
planning and execution are solved sequentially. However,
some of the studies of autonomous robots [1]{2][6][12] are
in agreement in the sense that movements of robots are
generated as a result of dynamic interaction with the envi-
ronment.

As is shown in the case of synchronized walking be-
tween two bipeds, autonomous systems can communicate
with each other through entrainment. The important point
of this example is that complex behavior with many de-
grees of freedom is coordinated by simple signals with a
few degrees of freedom. Moreover it is shown that the
principle of global entrainment is applicable to a group of
autonomous systems. By using entrainment as a method of
communication we might design new types of ADS where
qualitatively different properties emerge as a result of co-
operative interaction between the systems.
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