Mutual Adaptation in Human-Robot Cooperative Walk

---- Mutual-entrainment-based internal control ----

Yoshihiro MIYAKE and Junichi TANAKA

Dept. of Computational Intelligence and Systems Science Interdisciplinary Graduate School of Science and Engineering Tokyo Institute of Technology 4259 Nagatsuta, Midori-ku, Yokohama, 226 Japan (miyake@dis.titech.ac.jp, http://www.myk.dis.titech.ac.jp)

Abstract

Mutual-entrainment-based internal control is proposed to overcome the limitation of the control theory which is based on the separation between the system and its environment. In this new approach, since the system's dynamics is inseparable to that of environment, it should be composed of two different activities. One self-organizes the relationship between the system and the environment by using "mutual entrainment" as a non-linear interaction, and the other controls the organized relationship based on that relationship. This relationship-based internal control is realized as a mutual adaptation process in autonomous robot which walks cooperatively with humans.

1. Introduction

Can artificial systems adapt to dynamical and complex environments? Especially, it seems rather difficult to realize such an adaptation when the system's dynamics cannot be separated from that of environment. Thus, in this study, we attempt to solve this problem by constructing an autonomous robot which works cooperatively with humans, since an environment which includes human behavior becomes inseparable to the system's dynamics.

The reason why this kind of cooperation is difficult for artificial system is strongly related to the limitation of the framework in the control theory. Conventionally, control is based on the separation between a controller and a controlled object. In other words, inseparable nonlinear interaction between the system and the environment is approximately divided into two linear independent processes, observation and action, as shown in Fig. 1. Within this conventional

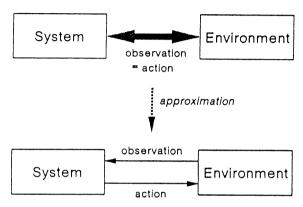


Fig. 1 Framework of control theory.

framework, a dynamical and complex environment was modeled as a stochastic process, and its extension to a non-Markov process has been necessitated in many fields. Thus, the most important problem is how to overcome the separation between the system and its environment as a limitation of the control theory. A new framework of control based on the inseparable relationship is required.

In this study, we propose a relationship-based internal control using mutual entrainment between nonlinear oscillations as a mechanism for generating and representing the inseparable relationship. This framework is realized as a mutual adaptation process in human-support walking robot for aged or handicapped persons.

2. Mutual-entrainment-based internal control

To establish an extended framework, we have been studying *Physarum* as a model of relationship-based internal control. This organism is a large amoeboid cell (up to 10 cm in diameter) which has no centralized control system. However, as shown in Fig. 2, it can

cell (up to 10 cm in diameter) which has no centralized control system. However, as shown in Fig. 2, it can cooperatively differentiate as a whole system in pattern reorganizing process. We have already clarified the mechanism for achieving such coordination without previously fixed differentiations such as between a controller and controlled objects [1, 2].

autonomous system. Each local system self-organize a intracellular Here, "internal" means that the system controls the inseparable relationship which includes the system as a as a distributed systems relationship, differentiation as a pattern formation in each local system is modified, and this differentiated spatial pattern recursively modifies the temporal relationship. We focus on this mutual modification process between the two activities as a model of the internal control. part. In other words, this is the relationship-based control, and a trick play in sports would be a good other local between temporal Physarum can be regarded through mutual entrainment dynamical relationship with oscillations. Based on this example.

shown in Fig. 3 [3]. One self-organizes the inseparable To realize this internal control, the system composed of two different activities, as relationship between the system and its environment in real time, and the other controls the relationship based an inseparable relationship by mutual entrainment, and complexity of the environment is compressed into a dynamically relationship obtained in the first activity is observed by the internal model, and it is controlled as an action of estimated in the reciprocal interaction between the first the model activity, on the internal model of the relationship. the second self-organizes Jo model. Relevancy 'n the system stable relationship. and second activities. internal should be

3. Human-support walking robot

Everyone has experienced unconscious synchronization when walking with another person. By making use of this mutual entrainment phenomenon for organizing an inseparable relationship, we construct a human-support walking robot as an example of the application of mutual-entrainment-based internal control. Since the purpose of the present robot is to support walking of aged and handicapped persons, cooperative walking between the robot and humans is realized. In the following, the robot is composed of two different

Fig. 2 Pattern reorganization in Physarum.



Fig. 3 Mutual-entrainment-based internal control.

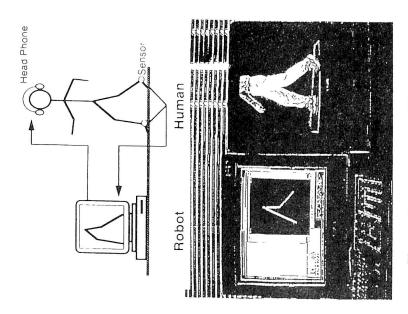


Fig. 4 Human-support walking robot.

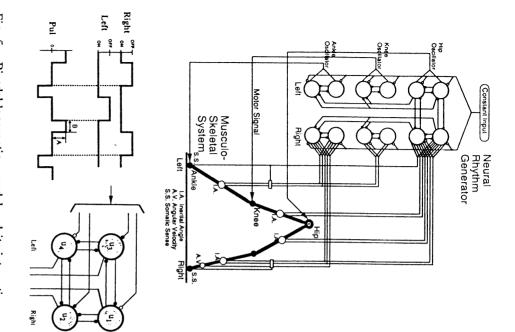


Fig. 5 Bipedal locomotion model and its interaction with human walking.

activities, one is the organization of relationship and the other is to control the relationship.

3.1 Organization of relationship

summarized in Fig. robot and the timing of steps of a walking person is applicable. however, any model which has rhythmic activity is al. [5] is used as an example of the robot model, setup, bipedal locomotion model proposed by to the human as sound through robot is detected in the simulator, and it is transmitted shoes, and the signals are transmitted to the simulated a walking person is detected by sensors attached to the through the sound of steps [4]. interaction between the robot and a human is realized constructing a real robot, as shown in Fig. 4. We use a kind of virtual-reality environment instead of On the other hand, the timing of steps of the The interaction mechanism between the The timing of steps of headphones. In this Mutual

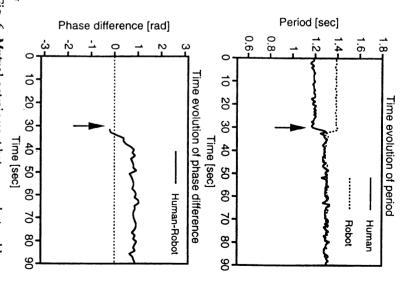


Fig. 6 Mutual entrainment between robot and human.

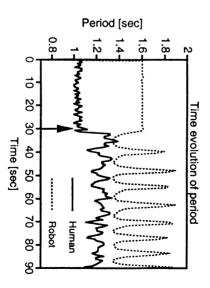


Fig. 7 Failure of mutual entrainment

However, when the difference between the two original steps, and it became stable as shown in the figure. was defined as the time difference of corresponding two that of the robot. between the original period of the walking person and shown in Fig. periods is larger than about $\pm 30\%$, mutual entrainment figure). The entrained period was an intermediate value interaction via the sound of steps (black arrow in the coincided with each other after the start of mutual was not observed, as shown in Fig. 7. In these mutual between a robot and walking person was observed. Under this conditions, 6, the period of walking rhythms The phase difference between them mutual entrainment

interaction processes, the person walks unconsciously. At least, the person cannot consciously neglect the stepping sound of the robot.

pattern, as shown in Fig. 9. arm's change of the original period. When the person changes change correspondingly as shown in Fig. 8. Similar walking periods and the phase difference between them his original walking period by gradually changing his states, the phase relationship changed depending on the nonlinear interactions. organized robot shape such were obtained with stepwise These results show that a relationship between by mutual entrainment, as and a walking as bending In addition, under entrained person or straightening, S changes in the an inseparable spontaneously the

3.2 Control of relationship

the phase relationship. However, the general method of correspond to a kind of internal model concerning to proportional to the original period based on this phase difference. relationship can be a one-to-one correlation between them. Thus, the phase walking period of the robot and the human, and there is the phase difference is regulated to decrease to zero. As of this robot system is to achieve cooperative walking and the walking person is realized. organizing the internal model still remains obscure in period of the robot should be increased, and vice versa. the phase difference is positive, the original walking Control of the phase relationship the present framework. time constant in the robot model is modified 0n Fig. the 10, difference phase difference. controlled by the phase difference between Since the purpose between the robot modulating the original These rules changes When the

suggested controlled to that of the present robot. to zero under the entrained state. Furthermore, described above. during entrainment through periods for both the robot and the human were modified interaction (white arrow). interaction, however, walking periods were response was measured. person was suppressed under the entrained state and the mutual interaction between the robot and the walking To check the relevancy of the control dynamics, that period the Thus, the phase difference decreased after human they became identical at the different before As shown in Fig. This means that the original suppressing the control mechanism walking the the S 11, original similarly start of mutual

When the human changes his original walking

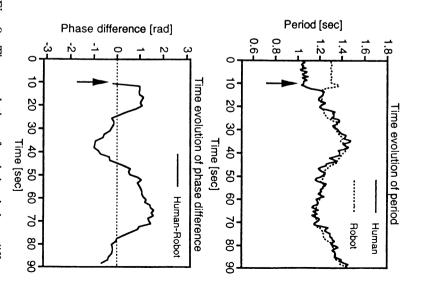


Fig. 8 Time evolution of period and phase difference under entrainment between robot and human.

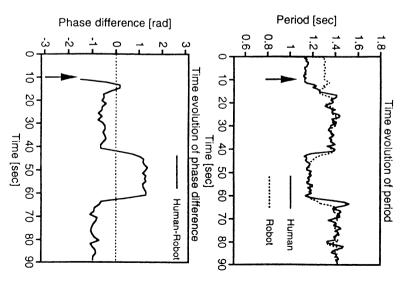


Fig. 9 Time evolution of period and phase difference under entrainment between robot and human.

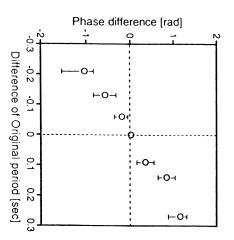


Fig. 10 Relationship between original period difference and phase difference

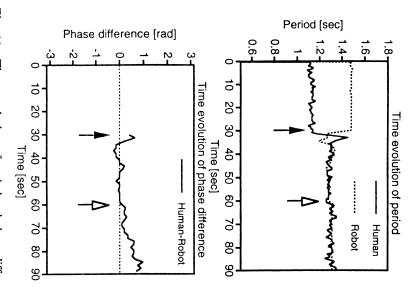


Fig. 11 Time evolution of period and phase difference before and after suppressing mutual interaction.

period by changing his arm's shape, the walking period of the robot changes synchronously and the phase difference decreases to zero, as shown in Figs. 12 and 13. This means that cooperative walking was realized through the present mechanism. Thus, it was shown that the present framework is suitable for controlling the inseparable relationship between a system and its environment.

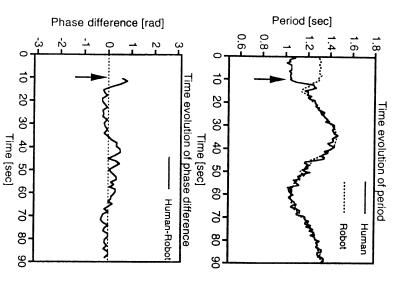


Fig. 12 Time evolution of period and phase difference under internal control between robot and human.

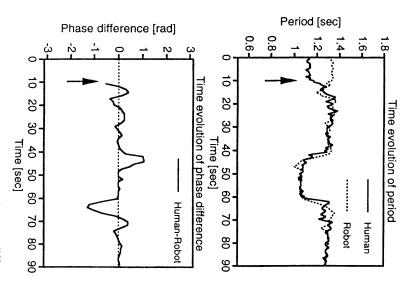


Fig. 13 Time evolution of period and phase difference under internal control between robot and human.

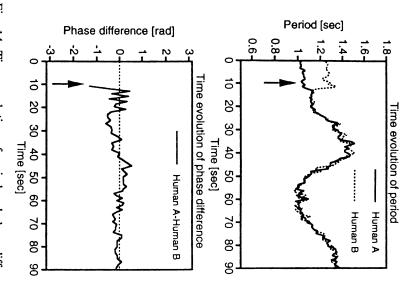


Fig. 14 Time evolution of period and phase difference under interaction between humans.

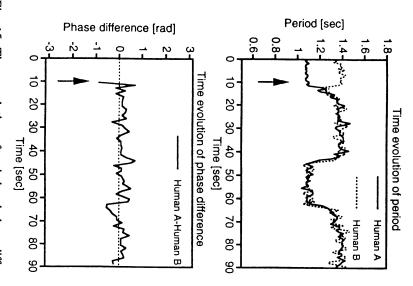


Fig. 15 Time evolution of period and phase difference under interaction between humans.

3.3 Comparison to human walking

Using the same experimental setup, mutual interaction between two walking persons was realized. When one person changes his original walking period, similar results as described above were obtained, as shown in Figs. 14 and 15. These results indicate that mutual-entrainment-based internal control is similar to the control mechanism of cooperative walking between humans.

4. Conclusions

In this report, we proposed mutual-entrainment-based internal control as an extended framework of control theory under a dynamical and complex environment. By self-organizing the relationship between a system and its environment, the relationship can be regulated based on the internal model of the relationship. Using this method, we demonstrated that a human-support robot which walks cooperatively with a human can be realized. In addition, we have already found that this method increases human comfort in such inseparable relationship. Thus, it is suggested that this framework would be applicable for human support in such fields as welfare, amusement and communications.

5. References

oscillators in unpredictable environment, Biol. Cybern. organization control of bipedal locomotion by neural 65: 147-159 [5] Taga, G., Yamaguchi, Y. & Shimizu, H. (1991) Self-Communication, Nagoya, Japan, pp. 118-123 IEEE Int. Workshop on Robot and Human based human-robot communication field. Proc. of 3rd. [4] Miyake, Y. & Shimizu, H. (1994). Mutual entrainment Springer-Verlag, pp. 310-321 system. In: Distributed Autonomous Robotic Systems, communication-field in distributed autonomous robotic Shimizu, H. (1994). Mutual-entrainment-based-[3] Miyake, Y., Taga, G., Ohto, Y., Yamaguchi, Y. & system. IEICE Trans. Fundamentals E76-A, 780-785 positional information in coupled nonlinear oscillator (1993). Environment-dependent self-organization of [2] Miyake, Y., Yamaguchi, Y., plasmodium, information field in chemotaxis of Physarum Shimizu, H. (1996). Environment-dependent positional [1] Miyake, Y., Tabata, S., Murakami, H., Yano, M. & J. Theor. Biol. 178: 341-353 Yano, M. & Shimizu, H.