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Abstract: To describe the re-differentiation phenomenon of cancer cells a mathematical model is proposed to study
mechanisms of self-organization phenomena of a multicellular system. The model is written by a reaction-diffusion
equation with a long-range interaction. Further, we investigate spatial and temporal pattern formation through the

mathematical analysis of our model.
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1 Introduction

Recently, the increasing of complex systems in several
technological fields, much as computer, distribution,
traffic industries e.g., has required the construction of
autonomous decentralized systems. The modeling of these
decentralized
conventionally guided by mechanisms of biological
One of the most
significant self-organization phenomena in this field is

autonomous systems has  been

self-organization phenomena.
morphogenesis, a part of embryology, which treats highly

of differentiated cells.
Morphogenesis involves many complex and dynamical

organized  arrangements

processes as cell division, cell differentiation, cell
movement, and more.

models
concentration’s pattern formation of chemical substances

Reaction-diffusion describing the

have achieved important results in theoretical studies of

morphogenesis' 2+ ¥,

Since, even though these models
have simple mechanisms, they can generate a great variety
of spatial and temporal patterns, simple gradients, spatially
cyclic patterns, and temporally oscillation patterns,
reaction-diffusion models have recently applied to traffic

signal network®*» 9,
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Conventional reaction-diffusion models assume the
principle of local (short-range) interaction between
constituent elements of a system. Such assumption can
apply the ideal situation that ignores the effects of an
environment around a system. Though the conventional
models have succeeded in explaining various pattern
formations of simple systems as the first approximation,
environmental effects do not affect existent systems but
also are considered to be dominant in some situations.
However, systematic studies hardly have targeted role of
environmental effects. Therefore, it is important to
construct a realistic model, which includes environmental
effects, especially non-local (long-range) interactions
beyond the nearest neighbor via environments.

It has been recently known that long-range interactions
via an environment play an important role for various
pattern formations in developmental biology” ®. In
particular, we have noticed and investigated long-range
cell-to-cell communication via extracellular matrix (ECM)
regarding the re-differentiation phenomenon of cancer
cells”. Re-differentiation is an interesting phenomenon
that cancer cells develop back to normal cells under
special situations.

In this paper, we propose a mathematical model, which
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describes the re-differentiation phenomenon of cancer
cells, in order to study mechanisms of self-organization
phenomena in multicellular systems and for examining
technological applications of reaction-diffusion models
with long-range interactions. Further, we investigate
spatial and temporal pattern formation through the

mathematical analysis of our model.

2 Biological Background

Cancer is a serious disease destroying all of the
functions of our living body, but it is an important object
for studying essential features of the cell, such as cell
division, cell movement, cell differentiation, and more.
Canceration of cells is deeply related to cell-to-cell
communication from the macroscopic viewpoint, namely a
cancer cell refuses communication with the surrounding
cells. Since a normal cell efficiently communicates with
other cells, the normal cell finally generate order in the
living body and maintain the order through the process of
Though
many biological experiments over the past few decades

cell division, cell differentiation, and others.

have been accomplished in order to study the mechanism
of cell-to-cell communication, this problem is yet to be
solved.

On the contrary, in studies, the
“morphogenetic field” as important but conceptual idea

theoretical

regarding the mechanism of cell-to-cell communication
has been proposed by B. Goodwin'®™ . A
“morphogenetic field” is extracellular environment
controlling communication between cells by transportation
of chemical substances and propagation of mechanical and
electromagnetic forces, to generate orders of the
multicellur system and maintain order. His idea leads us
to set forth a hypothesis about anormal behavior of the
cancer cell as follows: An anormalization of
morphogenetic field causes a cell to refuse communication
with surrounding cells. Regarding this hypothesis,
experimental results of B. Mintz et al. give us important
suggestions'? ',

They transplanted a part of the skin cancer cells of a
mouse A in the womb of a normal female mouse B. As
the result, a child mouse C born from the mother mouse B

had no cancer cells. Namely, the cancer cells derived

from the mouse A in the child mouse C changed to normal
cells in the womb of the mouse B. This surprising
phenomenon is called “re-differentiation” of the cancer
cell. This means that the cancer cells recover the function
of communication with other cells in the womb, and
finally go back to their normal states. Therefore, their
experimental results suggest that our hypothesis is right.
From this, it can be considered that the womb is a typical
morphogenetic field.

What is the mechanism of the re-differentiation of
cancer cells? To study this phenomenon, we suppose that
ECM is the main constituent of morphogenetic field
because ECM is an extracellur environment, and as such,
deeply concerned with the canceration of the cell. ECM
is a network-like macromolecule structure based on
Glucose, and is connected with almost all cells in the
multicellur system via Integrin, which is the family of
matrix  receptor embedded in
cellmembrane. Traditionally, ECM has been believed a
cement material filling in space between cells. However,
from recent experimental reports it has been recognized
that interactions between ECM and cells via integrin play

transmembrane

an important role for controlling cell division. Namely,
ECM is ™ extracellular cell increase factor” having local
control mechanism of cell division as follows:
(A1) CGF (Cell Growth Factor) Activity: ECM activates
cell division of the cell when ECM is coupled with cell
growth factors.
(A2) Contact Inhibition: ECM inhibits cell division of the
cells when the cells contact each other.
Further, we should note the following facts'®* '
(Bl) ECM has a global macromolecule structure that
generates mechanical forces, which propagates over longer
range than diffusion transportation of chemical substances.
(B2) The cell has a translating mechanism between
mechanical forces and intercellular chemical reactions.
From these facts, it is reasonable to assume that a cell
communicates other cells far from the nearest neighbor by
long-range interaction via ECM. Thus, we set forth the
following assumption: Globally controlling mechanism of
cell division, that is, cell-to-cell communication far from
nearest neighbor by long-range interaction via the ECM
globally controls cell division.
It is well known that the ECM is deeply concerned with
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Fig. 1 Schematic picture of our model

the canceration of the cell'* '
(C1) Fibronectin, which is one of constituents of the ECM,
decreases in surroundings of the cancer cell.
(C2) Integrin decreases in the cancer cell.

Therefore, it is considered reasonable and proper that
these functions of ECM-integrin system play an important
role for re-differentiation phenomenon of the cancer cell.

3 Our Model

To study mechanisms of the re-differentiation
phenomenon of cancer cells, we propose a schematic
picture of our model as shown in Fig. 1. Fig.1 represents
the schematic model of cell’s dynamics on the
ECM-Integrin system. Our reaction-diffusion model,
based on this picture, is described as follows:

IN(x, t)/ 3t=Dy V’N+ o (N)N>+ o (N)N?

- Jaf teWe,x’t, O)F(NQ, ))de’de, (1)
where N(x, t) is an cell density and Q is the spatial
domain in which the integral kernel W is defined. Eq. (1)
is a partial functional differential equation that a change
rate of the cell density at position x and time t depends on
the cell density at all other positions x* and all past times t’.
The first term of the right hand in eq. (1) represents the
cell movement of short-range diffusion having a diffusion
velocity Dy > 0. The second term represents the effect of

the contact inhibition having the increasing ratio:
piN)=-p,aN+p,, 2

where a« > 0 is a parameter of Integrin,and p,;and p,
are positive constants. The third term represents the
effect of CGF activation having the increasing ratio:
o:N)=p3a B, 3)

where 8 > 0 is a parameter of Fibronectin, and p; is
positive constant. The forth term represents the effect of
the long-range interaction between cells far from the
nearest neighbor via ECM, having a filter function:
F(N)= a 8 puN, )

where p 4 is positive constant. The integral kernel W(x ,

x’% t, t") is the weight function characterizing the essential
feature of ECM. However, the details of W have never
been understood yet. Therefore, we assume the integral
kernel W on the basis of mathematical property as follows.
(D1) Wdependsononlyy =|x—x’|>0ands =|t—t’|>
0,

W(x, x’;t, ) =W(y,s). (5)

(D2) W is a positive function in the entire region of y and
S,

W(y,s) 2 0 for V y>0, V s>0. 6)

(D3) W is a monotone decreasing function of y and s,
W(y,s) >0 at y—0, s—0 Q)

(D4) W satisfies the following normalization condition:
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57 7 oWy, s)dsdy=1. (8)
Here, (D1) means that ECM is uniformly distributed
throughout the womb. (D2) means that the regulation of
the ECM is inhibitory in the entire region of womb. (D3)
represents that the intensity of the inhibition decreases as y
and s become larger. (D4) represents that the long-range
effect of ECM is the average value of F(M), which is
<FM)> = §7_. 1" ¢W(y , s)F(M(Xx — v, t — s))dsdy.
Thus, assumptions (Al) to (A4) can be biologically
interpreted that ECM globally inhibits the function of cell
division in the entire region of womb.

In this paper, we consider one-dimensional space for the
sake of simplicity. Further, according to (D1) to (D4), we
can formally take the range of the spatial integral range to

[{Q| —c0 = x' = oo} and the lower limit of the
time integral to to = —o©o, Furthermore, since we choose
the parameters as follows: Dy=1, p =1, pa2=1, p3=

a, ps= [ >0, Eq. (1) is finally described as follows:
AN, )/ at= 3N/ ax’ — aN +(1+ a?f)N?

a B T7 57 oW(y, sIN(x—y, t—s)dsdy. (9)
Although Eq. (9) is not the exact model based on
experimental facts, the conceptual framework of our

model is quite clear as illustrated in Fig. 1.

4 Numerical Simulations

In this section, we analyze the behavior of the
multicellular system described as Eq. (1). As discussed,
cell groups placed on normal ECM form normal tissue in
the presence of Integrin. This corresponds to Turing
pattern formation of Eq. (1) from the mathematical
viewpoint. Thus, in mathematical analysis, the parameter
@, which indicates the function of Integrin, should be
divided into a=0and « #0.

(Case. 1) a=0:

This case is corresponding to the situation without the
effects of ECM. Then, Eq. (9) is
IN(x, )/ at= 3°N/3ax*+N. (10

Fig. 2 show the numerical result under the following

condition: Initial condition is N(x, 0) = 1.0 + random, the

boundary condition is Derichlet type. As shown in Fig. 3,

cell density rapidly diverge in the region around the
position x = 17 at the time t = 70.
(Case. 2) « #0:

5885883888

Fig. 2 Behavior of solution of Eq. (10)

(Case. 2-1) W(y,s)= 6 (y)d (s
This case is corresponding to the situation that ECM has

the spatially local effect without time delay.

After performing a linear stability analysis under the
assumption that the linearized equation of (9) has the solution
of the form exp( At + ikx), we obtain the following
characteristic equation of A :

A=—K —lVa + aB, (11)

where where k is a wave number and 1 is a frequency
number. If ReA < 0, the solution of the linearized
equation is stable. Here, we employ the parameter 3 asa
bifurcation parameter. When the bifurcation parameter 3
is getting larger from a small value, if ReA becomes Re
A >0, then the solution becomes unstable. Therefore, Re
A =0 is the bifurcation point of the linear stability. This
bifurcation point corresponds to the following function:

B =kKla +1a’ (12)

In this case, the critical wave number k¢ = 0 becomes
unstable at this point 3 = f=1/ a’. However, a new
steady state formed near the bifurcation point 1 is
spatial homogeneous.

(Case. 222) W(y,s)=a2 e /¥ «be ™ for a>0,
b>0:

This case is corresponding to the situation with
long-range interaction via ECM. Here, the parameter a is
a scale parameter charactering a spatial property of ECM’s
dynamics, and the parameter b is a scale parameter
characterizing temporal one. In this paper, we give only
the results of a linear stability analysis. Fig. 3 shows the
phase diagram at the first bifurcation point in parameter
space (a’, b), where T is the region generating Turing

pattern and Il is the region generating the temporal
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Fig.3 Phase diagram in parameter space (a2, b)

oscillating pattern formed by Hopf bifurcation.

Fig. 4 shows the numerical result under the following
condition: Initial condition is N(x, 0) = 1.0 + random,
Boundary condition is Derichlet type, « = 0.5, 8 =
396, a =12 and b = 20. As shown in Fig. 3, cell
density

inhomogeneous steady pattern.

form Turing pattern, that is, spatial

Fig. 5 shows the numerical result under the following
condition: Initial condition is N(x, 0) = 1.0 + random,
Boundary condition is Derichlet type, « =0.5, 8 =3.0,
a=0.5,and b =0.7. As shown in Fig. 4, cell density
form spatial inhomogeneous and temporal cyclic pattern.

5 Conclusion and Discussion

In this paper, we proposed a reaction-diffusion model
with long-range interaction as a model that describes the
re-differentiation phenomenon of cancer cells. From the
results of the numerical simulations, we find that the
behaviors of an asymptotic solution in the case of a #
0 is different from the case of a= 0. In the former case, the
asymptotic solution diverges in finite time. On the contrary,
the latter generate (a) spatial homogeneous steady pattemn
(case. 2-1), (b) spatial inhomogeneous steady pattern and
spatial inhomogeneous-temporal oscillationary pattemn (case.
2-2). If the bifurcation parameter 8 becomes larger
beyond the first bifurcation point, more complex patterns can
be generated, according to bifurcation theory.

In biological viewpoint, the numerical simulations mean
that in the case of a= 0 (the situation with no effects of
ECM) cells starting from an initial condition (stationary state
+ fluctuation) anormally increase in finite time. On the
contrary, In the case of a #* 0 (the situation with effects of

Fig.5 Spatial inhomogeneous- temporal ocsillationary

long-range interaction via ECM) cells starting from same
condition become stationary state by inhibiting anormal
increase of cells.

Thus, our theoretical study of the re-differentiation
phenomenon of cancer cells provides new insights into
morphogenesis formation as follows: long-range cell-to-cell
communication via ECM (extracellular environment) plays
an important role for biological pattern formation.

From the standpoint of technological applications, our
model provides more general frame including non-local
interaction between the elements of a system, for the
modeling autonomous decentralized system. Especially,
non-local interaction model is useful in modeling of
autonomous decentralized system under inhomogeneous
environments.

Finally, it should be noted that the generated patterns of our
model depend on the integral kernel W(y, s) characterizing
spatial-temporal properties of the effect of ECM. In this
paper, we analyze the typical cases, which is satisfied with
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the assumptions (D1) to (D4), it is important to explore
whether more general integral kemel W(y, s). Although an
integral kemnel W(y, s) must be determined by experimental
facts, it is difficult to obtain quantitative data because ECM is
very physically and chemically complex structure. Therefore,
we need to at least theoretically explore various possibilities
of an integral kemel W(y, s). These studies will be considered
in a future paper.
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