
Evaluation of severity of Parkinson’s disease using stride
interval variability

Leo Ota, Hirotaka Uchitomi,
Kazuki Suzuki and Yoshihiro Miyake

Department of Computational Intelligence
and Systems Science

Tokyo Institute of Technology
Midori, Yokohama 226-8502, Japan.
{ohta, uchitomi}@myk.dis.titech.ac.jp

max.zukin@gmail.com, miyake@dis.titech.ac.jp

Michael J. Hove
Max Planck Institute for

Human Cognitive and Brain Sciences
04103 Leipzig, Germany.
michaeljhove@gmail.com

Satoshi Orimo
Department of Neurology
Kanto Central Hospital,

Setagaya, Tokyo 158-8531, Japan.
orimo@kanto-ctr-hsp.com

Abstract—Parkinson’s disease (PD) is a neurodegenerative
disorder by degeneration of dopamine neurons, affecting motor
controls related to basal ganglia. Because severe movement dis-
orders such as gait disturbances are often observed, evaluation
from gait analysis is useful. From such a background, Coefficient
of Variation (CV) and Detrended Fluctuation Analysis (DFA)
comes to be used as one of the methods for analyzing the
variability of the stride interval in recent years. However
classification of the severity of PD by stride interval variability
has not been reached to practical use enough. In this paper, in
order to clarify the difference in age and the severity of PD
patients, variability of stride interval were analyzed by CV and
DFA. As a first step, we performed analysis of stride interval in
three minutes’ walk of 17 PD patients, 13 healthy elderly and 12
healthy young people. Particularly, we divided PD patients based
on the Hoehn and Yahr (HY) scale into an HY2 group (n=9)
and an HY3 group (n=8) in order to examine the relation to
disease severity. Results indicate that CV seemed to distinguish
PD patients from healthy people and that DFA fractal exponent
tended to be related to the age and the disease severity. From
these results, gait analysis using both CV and DFA is suggested
to classify participants into healthy young, healthy elderly, HY2
and HY3 groups. For future direction, there are possibilities for
seeing the progression from healthy people to PD patients.

Index Terms—Fractal analysis, gait analysis, stride interval
variability, Parkinson’s disease and Hoehn and Yahr stage.

I. INTRODUCTION

Parkinson’s disease (PD) is a progressive neurological
disease caused by degeneration of the dopamine neurons.
Due to strong depression of motor control and dysfunction of
rhythm generation in basal ganglia, movement disorders such
as tremor, akinesia, rigidity, and impairment of postural reflex
are typical symptoms of PD [1]. When PD progresses, pos-
tural instability or gait disturbances appears in many cases.
For example, gait festination, wiggle walk (brachybasia) and
freezing of gait are observed.

In recent years, objective measurement of human walking
comes to be easy. And biological or physiological time series
including gait data is thought to be come from nonlinear
dynamics, which is composed from complex interactions.

From perspective of nonlinear dynamics, variability of gait
cycle is attracted. Magnitude of the stride interval variability
of PD patients were bigger than that of healthy people [2].
We can calculate the Magnitude of variability by means
of standard deviation or Coefficient of variation (CV). In
addition, the fractal property of the gait cycle fluctuation has
been reduced by specific disease such as PD or Huntington’s
disease [3]–[6]. Spectral analysis or Detrended Fluctuation
Analysis (DFA) are used to see fractal property. By DFA,
we can analyze the fractal properties of non-stationary time
series data [7], [8]. Based on these background, there is
possibility of diagnosis of the severity of PD using CV or
DFA.

There are some scales for severity of PD [9], [10]. Par-
ticularly, Hoehn and Yahr (HY) scale is widely used in
the clinical field as an index of the severity of the PD,
because the number of items that we have to examine is
few [10]. Correlation with the severity of PD and CV has
been suggested [2]. However, there are some exceptions [6],
[11]. Therefore, to classify the severity of PD with only CV
is difficult. On the other hand, correlation between the fractal
property of the gait cycle fluctuation and the severity of PD is
also reported [6]. However fractal property of healthy elderly
people is likely to be reduced compared to young people [3]–
[5]. Therefore, classifying the gait variability into different
age or severity of PD groups using only CV or using only
DFA has problems.

In this study, we tried to analyze stride interval variability
comprehensively using both the DFA and the CV. Our
hypothesis is that we can clarify the difference in age or
the severity of PD by combining magnitude of stride interval
variability and fractal property of stride interval. In order to
verify this hypothesis, we divided participants into healthy
young group, healthy elderly people, mild PD patients groups
and relatively severe PD patients. Then we compared each
group in terms of both CV and DFA.
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II. MATERIAL AND METHOD

A. Participants

Seventeen patients (11 women, 6 men) with idiopathic
Parkinson’s disease participated in the experiment. We re-
cruited the patients whose HY stage is 2 or 3, and they did
not exhibit freezing or festinating gait [11]. HY stage 2 (HY2)
is defined as bilateral disorder without balance impairment,
and HY stage 3 (HY3) is defined as bilateral disorder with
balance impairment, but physically independent [10]. These
participants were divided into two groups. One group HY2
consisted of 9 patients whose HY stage was 2 (mean age
= 65.3 years; s.d. = 6.1 years; see Table III) and the other
group HY3 consisted of the patients whose HY stage was 3
(mean age = 70.9 years; s.d. = 8.0 years; see Table IV). Mean
duration of disease of HY2 was 3.8 years (s.d. = 3.1 years)
and that of HY3 was 4.1 years (s.d.=4.5years). All were
tested while on dopaminergic medication. Twelve younger
healthy controls (11 men, 1 woman, mean age = 25.0 years;
s.d. = 3.2 years; see Table I) and thirteen elderly healthy
controls (7 men, 6 woman, mean age = 70.1 years; s.d. =
3.1 years; see Table II) also participated. Informed consent
was provided and participants were paid for participating.
Experimental procedures were approved by the Kanto Central
Hospital Ethics Committee.

B. Task and Experimental setup

Participants were instructed to walk at a natural and
comfortable pace around a long corridor. The length of the
course was 200m. On average, each trial lasted about 3
minutes and contained approximately 320 footsteps. Foot step
timing was collected via foot switches (OT-21BP-G, Ojiden,
Japan) attached to participants’ shoes, was relayed to a laptop
(CF-W5, Panasonic, Japan) via radio frequency every 10
ms, and was processed in real time. Two transceivers (S-
1019M1F, Smart Sensor Technology, Japan) and a receiver
(WM-1019M1F, Smart Sensor Technology, Japan) were used.
Fig. 1 shows a scene of the walking experiments and foot
switches. The computer algorithm controlling the above
experimental system was run on the laptop.

C. Data Analysis

The stride interval time series were analyzed. The time
series data are represented by u(i) in the following (1),

u(i) = T (i+ 1)− T (i), (1)

where u(i) is the i-th stride interval, and T (i) represents the
i-th step timing (i.e. the time to get the right foot on the
ground).

Fluctuation magnitude is evaluated by Coefficient of vari-
ation (CV). This is standard deviation (s.d.) normalized by
the mean value, as in (2).

CV =
us.d.

uave
× 100 [%], (2)

(a) A scene of walking experiment

(b) Foot switches for detecting heel contact

Fig. 1. Experimental scene and experimental setup

where uave is average of stride interval and us.d. is standard
deviation of stride interval.

We quantified the long-range correlations using Detrended
Fluctuation Analysis (DFA). This technique offers certain ad-
vantages over other methods (e.g., spectral or Hurst analyses)
when dealing with non-stationary time series, for it ”avoids
spurious detection of apparent long-range correlations that
are an artifact of non-stationarity” [7] [8].

First the human’s stride interval time series u(i) is inte-
grated as in (3),

y(k) =
k∑

i=1

(u(i)− uave), (3)

where uave is the average of stride interval time series. Then,
this integrated time series y(k) is divided into equal boxes
of length, n. In each box of length n, a least-squares line is
fit to the data, which represents the trend in each box. The
fluctuation F (n) for each box is then calculated as the root-
mean-square deviation between the integrated time-series and
its local trend yn(k) as in (4).

F (n) =

√√√√ 1

N

N∑
k=1

[y(k)− yn(k)]2 (4)

This calculation is repeated for all possible time scales (box
sizes) to provide a relationship between F (n), the average
fluctuation as a function of box size, and the box size n (i.e.
the number of stride interval in a box which is the size of
the window of observation).
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TABLE I
DFA FRACTAL EXPONENTS OF HEALTHY YOUNG PARTICIPANTS

(M:Male, F:Female)

Participants Sex Age (years) Stride interval
mean CV fractal exponent
(sec) (%)

1 M 34 1.07 1.28 1.12
2 M 23 1.23 2.71 1.29
3 M 24 1.21 2.18 0.98
4 M 24 1.08 1.49 0.85
5 M 26 1.06 1.84 0.90
6 F 25 1.07 2.02 1.21
7 M 26 1.14 2.12 0.88
8 M 22 1.09 1.70 1.29
9 M 22 1.19 2.26 1.01
10 M 24 1.07 1.86 0.94
11 M 27 1.18 1.70 0.96
12 M 23 1.22 3.56 1.04

mean - 25.00 1.13 2.02 1.04
s.d. - 3.25 0.07 0.57 0.15

median - 24 1.11 2.13 1.00

Typically, the fluctuation, F (n), will increase with larger
box sizes. A linear relationship between n and F (n) on a
log-log plot indicates self-similar scaling property, in that
fluctuations in the smaller boxes are related to the fluctuations
in the larger boxes in a power-law relation. The slope of
the line log10 F (n) over log10 n is the fractal exponent α,
and gives a measure of the randomness of the original stride
interval time series. Using DFA, a fractal scaling exponent
α = 0.5 corresponds to rough and unpredictable white
noise; α = 1.0 corresponds to 1/f-like noise and long-range
correlations [7] [8], [4]. Because no significant difference
were observed between fractal exponent of stride interval of
right and left, analyses were performed on the stride interval
of the right leg.

III. RESULT AND DISCUSSION

Fig. 2 shows examples of the time series data of stride
interval (upper panels) and the DFA plot (lower panels). Fig.
2(a), 2(b), 2(c) and 2(d) correspond to healthy young, healthy
elderly, HY2 and HY3 group, respectively. Comparing these
four groups, the temporal variation of stride interval of
healthy young group and healthy elderly group were shown
to be smaller than that of HY2 or HY3. The fractal property
of these time series data suggests that the fractal exponent
becomes lower in bigger HY stage or older age. Furthermore,
all DFA fractal exponents are shown in Table I, II, III and IV.
The mean values of each fractal exponent were in the order
of disease severity or age. Therefore, the fractal exponent
becomes lower in bigger HY stage, suggesting that the higher
disease severity means more unpredictable gait.

A. Coefficient of Variation (CV)

Fig. 3 is a box and whisker plot of CV. Using Kruskal-
Wallis rank sum test, the significant difference among
healthy young, elderly, HY2 and HY3 group was shown

TABLE II
DFA FRACTAL EXPONENTS OF HEALTHY ELDERLY PARTICIPANTS

(M:Male, F:Female)

Participants Sex Age (years) Stride interval
mean CV fractal exponent
(sec) (%)

1 F 67 1.03 3.12 0.71
2 M 71 1.03 1.67 0.75
3 M 75 0.98 1.47 0.63
4 M 71 1.01 1.61 1.00
5 F 71 1.04 3.41 0.93
6 F 67 1.06 2.11 0.97
7 M 63 1.09 1.38 0.92
8 F 71 0.94 2.22 0.76
9 M 71 0.97 1.40 0.82
10 M 74 1.07 1.90 0.91
11 F 69 1.02 2.11 0.87
12 F 70 1.14 1.91 0.85
13 M 71 1.29 3.47 0.87

mean - 70.08 1.05 2.14 0.85
s.d. - 3.09 0.08 0.74 0.11

median - 71 1.01 1.91 0.87

TABLE III
DFA FRACTAL EXPONENTS OF HY2 PATIENTS (M:Male, F:Female)

Patients Sex Age Disease Stride interval
(HY2) (years) duration mean CV fractal

(years) (sec) (%) exponent
1 F 59 0.6 1.01 3.60 0.93
2 F 57 0.5 0.91 1.92 0.91
3 F 76 6 1.01 1.74 0.80
4 F 71 5 0.99 2.22 1.14
5 M 66 0.25 1.00 3.51 0.79
6 F 63 8 1.21 3.35 0.88
7 F 66 2 1.14 3.28 0.99
8 F 61 4 0.95 1.64 0.82
9 F 69 8 1.05 3.35 0.83

mean - 65.33 3.82 1.03 2.73 0.90
s.d. - 6.06 3.13 0.09 0.83 0.11

median - 66 4 1.01 3.28 0.90

(χ2(3) = 10.35, p = 0.016). Furthermore, CV of HY3
(Mean = 2.88%) was significantly higher than that of
healthy young participants (Mean = 2.02%), using Holm’s
method (p = .044). Similarly, CV of HY2 (Mean = 2.73%)
was also likely to be higher than that of healthy young
(Mean = 2.02%) (p = .092). In addition, CV of HY3
(Mean = 2.88%) was also likely to be higher than that
of healthy elderly (Mean = 2.14%) (p = .092). These
results suggest that fluctuation amplitude of PD patients’
stride interval is higher than that of healthy participants. Here,
the result that CV of PD patients were relatively higher than
that of healthy participants (young and elderly) is consistent
with previous studies [2], [6], [12], [13]. On the other hand,
the significant difference of CV between HY2 and HY3 was
not observed (using Holm method, p = .64). Mean of CV of
HY3 (Mean = 2.88%) was similar to that of HY2 (Mean =
2.73%), but median of CV of HY3 (Median = 2.91%) was
likely to lower than that of HY2(Median = 3.28%). Median
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(a) Healthy young participant (b) Healthy elderly participant (c) Patient of HY2 (d) Patient of HY3

Fig. 2. Samples of time series data of stride interval (figures above) and DFA fractal exponents (figures below). Stride interval variability of healthy young
people tends to be smaller than that of elderly people and PD patients. And the fractal exponent represents the property of stride interval time series structure.
Fractal exponent of healthy young people is likely to be higher than that of elderly people and PD patients.

TABLE IV
DFA FRACTAL EXPONENTS OF HY3 PATIENTS (M:Male, F:Female)

Patients Sex Age Disease Stride interval
(HY2) (years) duration mean CV fractal

(years) (sec) (%) exponent
1 M 69 14 0.97 2.72 0.85
2 F 74 6 1.05 2.54 0.76
3 M 78 4 0.99 2.42 0.90
4 M 53 4 0.99 2.73 1.02
5 F 69 1 1.07 3.29 0.80
6 M 76 0.25 1.15 2.69 0.77
7 F 77 3.00 1.14 3.74 0.72
8 M 71 0.25 0.95 2.90 0.89

mean - 70.88 4.06 1.04 2.88 0.84
s.d. - 8.03 4.51 0.08 0.43 0.10

median - 72.5 3.5 1.02 2.91 0.80

of CV of healthy young participants (Median = 2.13%) was
lower than that of PD patients’ groups, and that of healthy
elderly participants (Median = 1.91%) was the same as
young people. Therefore CV might detect neurodegenerative
disease.

From these results, increase in CV of gait cycle seems to
be associated with PD. These results suggest that the size

of gait cycle fluctuation have potential to diagnose the PD
disease, by only measuring some gait cycle information.

B. Detrended Fluctuation Analysis (DFA)

Fig. 4 is a box and whisker plot of DFA fractal expo-
nents. Using Kruskal-Wallis test, the significant difference
among healthy, HY2 and HY3 group was shown (χ2(3) =
12.78, p = 0.005). Furthermore, the fractal exponent of
HY3 (Mean = .84) was significantly lower than that of
healthy young participants (Mean = 1.04), using Holm’s
method (p = .004). Similarly, the fractal exponent of HY2
(Mean = .90) was also lower than that of healthy young
(Mean = 1.04) (p = .05). These results suggest that
randomness of PD patients’ stride interval is higher than that
of healthy participants. The significant difference of fractal
exponent between HY2 and HY3 was not observed (using
Holm method, p = .35), but mean of fractal exponent of
HY3 (Mean = .84) is likely to be lower than that of HY2
(Mean = .90). Here, similar tendency were confirmed in
previous studies [5], [14].Moreover, the median of fractal
exponent of HY2 (Median = .90) was higher than that of
HY3 (Median = .80). Median of fractal exponent of healthy
participants (Median = 1.00) was the highest, and the
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Fig. 3. Comparison of CV of stride interval among healthy younger, healthy
elderly, HY2 and HY3 group (*: p < .05, †: p < .10). Significant difference
between healthy young group and HY3 group is observed. And CV of HY2
tends to be higher than that of young people. Furthermore, CV of HY3 tends
to be higher than that of healthy elderly people.

magnitude relation in median was consistent to the magnitude
relation in mean.

However, the fractal exponent of healthy elderly (Mean =
.85) was significantly lower than that of healthy young par-
ticipants (Mean = 1.04) (p = .002). And median of fractal
exponent of healthy elderly participants (Median = .87)
was the same level as that of HY2. It is suggested that
age and neurodegenerative disease might related to fractal
property of stride interval. In previous study, relationship
between complexity of power spectrum of stride interval
and disease severity of PD were reported [6]. In this paper,
positive correlation between spectral exponent β and Webster
scale. β is determined by culculating the negative slope of
the line relating the squared Fourier amplitude[logS(f)] to
frequency[log f ]. β is related to DFA fractal exponent α
by formula β = 2α − 1 [15]. However spectral analysis
might not be able to avoid spurious detection of long-range
correlations as DFA [8]. And they used Webster scale as
severity of PD. The range of Webster scale is 0-30, and the
score of Webster scale is high when impairment is severe.
The Webster includes one disability (self-care) and nine
impairment items [9]. There is possibility that the relationship
of Webster scale and HY scale is not in direct proportion.

From these results, DFA fractal exponent of gait cycle
seems to be associated with HY scale or age compared with
CV of gait cycle. These results suggest that the dynamics
of gait cycle fluctuation have potential to diagnose the PD

Fig. 4. Comparison of DFA fractal exponent of stride interval among
healthy younger, elder, HY2 and HY3 group (**: p < .01, *: p < .05).
Fractal exponent of healthy young people seems to be higher than that of
healthy elderly people and PD patients.

disease severity, but the healthy elderly people are likely to
be the same level as PD patients.

C. Feature Space Configured with CV and DFA

Based on the observation of CV and DFA, we investigated
the relationship between CV and DFA.

Fig. 5 plots the gait patterns associated with the healthy
young people, healthy elderly people, PD patients in HY2
group and PD patients in HY3 group, in the feature space
that is configured with CV and DFA. It can be observed
that patterns healthy people’s mainly congregated in the area
where CV < 2.5%, whereas most of PD patient’s patterns
were in the area where CV > 2.0%. Almost all healthy
young people’s patterns were in the area where DFA >
.85, in contrast to elderly people’s patterns, which mostly
were in the area where DFA < .90. In PD patient’s groups,
HY2 patterns were in the area where DFA > .80, but HY3
patterns were in the area where DFA < .85.

For future direction, to apply the cluster analysis is consid-
ered, to distinguish these four groups. For details, to correct
more stride interval time series set of participants and to apply
canonical discriminant method or extended Support Vector
Machine (SVM) is considered.

IV. CONCLUSION

We evaluated variability of stride interval in a three-minute
walk performed by healthy young and elderly participants
and PD patients whose HY scale were 2 and 3, using CV
and DFA. From CV, the possibility of detecting PD were
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Fig. 5. Scatter plot of the gait patterns of the healthy young people, marked
as triangles, that of the healthy elderly people, marked as circle, that of the
HY2 group, marked as +, and that of HY3 group, marked as ×, in the
2-D feature space that is configured with CV and DFA fractal exponent
of stride interval. CV of healthy people including both young and elderly
people tends to be lower than CV of PD patients including both HY2 and
HY3. In PD groups, HY2’s fractal exponent seems to be higher than HY3’s
fractal exponent.

suggested. But the severity of PD were not detected. On the
other hand, DFA seemed to reflect age or severity of PD.
From these results, the possibility of clustering 4 group were
speculated.
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