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Abstract: The gait rhythm always fluctuates with time. The purpose of this paper is to construct the evaluation platform 

of gait rhythm. We focused on the coefficient of variation (CV) and the scaling exponent (α) calculated by detrended 

fluctuation analysis. The motor symptoms severity of Parkinson’s disease was classified. The combination of CV and α 

has a potential to estimate the severity of a motor symptom (postural instability). In addition, we clarify the effect of 

relationship between individual gait rhythm and environment rhythm on the individual gait rhythm using rhythmic 

auditory stimulation. The α tends to be related to stable relationship between gait rhythm and cue rhythm.  

Keywords: Gait Rhythm; Scaling Exponent; Coefficient of Variation; Movement Disorder; and Sensorimotor 

Interaction.  

 1. INTRODUCTION 

Walking is emerged from global entrainment with 

environment [1]. Rhythm is important in walking 

because global entrainment with environment can be 

confirmed by gait rhythm. In healthy young people, gait 

rhythm fluctuation is small, and gait rhythm time series 

have long-term persistence [2]. However, the long-term 

persistence in walking paced by rhythmic auditory 

stimulation [3], diminished with time. 

The gait rhythm fluctuation is altered in Parkinson’s 

disease (PD), too [4]. PD is one of the 

neurodegenerative diseases which causes movement 

disorder. One of the main symptoms is postural 

instability (PI), and it is related to gait disturbances [5]. 

Rhythmic auditory stimulation (RAS) is one of the 

methods for gait training using sensorimotor interaction 

for PD [4,6]. This method suggests that fixed-tempo 

RAS decreases the coefficient of variation (CV), and 

interactive RAS improves mainly the scaling exponent α, 

which represents the fluctuation property of gait rhythm. 

It is calculated by detrended fluctuation analysis. 

However, it is not clear whether CV and , which 

evaluate the individual dynamics of gait rhythm, are 

related to the clinical symptoms and sensorimotor 

interaction. This study focused on PI as a major clinical 

symptom in PD patients, and we classify the subjects 

according to its presence or absence. Further, the 

severity of PI in a group of PD patients is classified. In 

addition, we compare healthy young people’s walking 

with different rhythmic cues.  

2. METHOD 

2.1 Classification of severity of Postural instability 

2.1.1 Participants and procedures 

The Kanto Central Hospital Ethical Committee 

approved the procedure of this experiment. Written 

informed consent was provided to all participants. 

Forty-five patients with PD and 17 healthy people 

participated in the experiment. All patients walked about 

200m once. Participants were divided into 4 groups (see 

Table 1). We focused on the postural instability (PI) as a 

major motor symptom seen in PD and modified Hoehn 

and Yahr scale (H&Y) was used to determine the 

absence or presence of PI, and whether mild or obvious 

PI is observed [7-9]. Performance on the pull test is 

included in check item of H&Y. PI can be classified by 

the performance of the pull test; H&Y 2 or less with no 

sign of PI (no-PI), H&Y 2.5 with signs of mild PI 

(mild-PI), and H&Y 3 with obvious signs of PI 

(obvious-PI).  

2.1.2 Data acquisition and statistical analysis 

Foot contact timings were sensed by foot switches 

(OT-21BP-G, Ojiden, Japan), and sent to a laptop PC 

(CF-W5AWDBJR, Panasonic, Japan) by wireless 

transmitter (S-1019M1F, Smart Sensor Technology, 

Japan). The stride interval 𝑢ℎ(𝑡) is described as  

𝑢ℎ(𝑖) = 𝑡ℎ(𝑖 + 1) − 𝑡ℎ(𝑖)  (1) 

where 𝑡ℎ(𝑖) is the i-th step timing of the subjects’ same 

leg.  

  CV is calculated as the standard deviation divided by 

average. The larger the fluctuation, the larger the CV.  

We focused on  to evaluate the persistence in gait 

rhythm.  can be quantified by detrended fluctuation 

analysis (DFA) [10,11] based on the following 

calculation.  

𝑦𝑘 =
1

𝑁
∑ [𝑢(𝑗) − 〈𝑢〉]𝑘

𝑗=1    (2) 

𝐹(𝑛) = √
1

𝑁′
∑ [𝑦(𝑘) − 𝑦𝑛(𝑘)]2

𝑘  ∝ nα      (3) 

Table 1. Characteristics of participants in 4 groups. 

Group 

PI 

(n = 

26) 

no- 

PI (n = 

36) 

p 

obvi- 

ous- 

PI (n 

= 15) 

mild- 

PI (n 

= 11) 

P 

Mean 

age 

(year) 

72.7 68.1 
0.

01 
73.0 72.3 0.83 

H&Y 

(range) 

2.5 - 

3 

Healthy 

& 1 - 2 
- 3 2.5 - 

p - values were based on Welch’s two sample t-test. 

† Leo Ota is the presenter of this paper. 
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where n is a box size, yn(k) is local trend in each box 
(𝑘 = 1, … , 𝑁′) and 𝑁 = ⌊𝑁⌋. If α is near 0.5, the time 

series is white noise. If α is near 1.0, the time series has 

long-term persistence.  

  Support vector machine was used with a combination 

of CV and  to obtain a function for dividing the 

measured data into two groups [12,13]. CV and α were 

normalized. One of the soft margin support vector 

machine, C-SVM was used. The advantage of SVM is 

easily extended to the nonlinear discriminant analysis 

by using a nonlinear kernel. At first, we classified the 

difference between presence and absence of postural 

instability (PI). Then we focused on people with PI, and 

classified the difference between mild PI and obvious PI. 

For preprocessing, we standardize each CV and  value 

by setting minimum value to 0 and maximum value to 1, 

in order to eliminate the effect of difference of variation 

in each scale. The algorithm of SVM is summarized 

bellow.  

Ordered pair was determined as follows: 
(𝒙1, 𝑦1), … , (𝒙𝒍, 𝑦𝑙) ∈ 𝑹𝑁 × {−1,1}       (4) 

where 𝒙𝑖 is the data vector and 𝑦𝑖 is the pair of CV 

and , label 𝑦𝑖  is the group ID which is related to the 

score of H&Y, and 𝑙 is the number of the training data. 

The classifier determines the hyperplane based on 

certain optimization criteria. At first, the model is 

trained by using data. Then we estimate the accuracy by 

using the test data. We use the leave-one-out method to 

estimate the accuracy of the classification. In this 

method, data were divided into two parts, namely test 

data and training data. The accuracy is estimated by the 

accurate rate for all combination of test data and 

training data. In the test phase, the label for test data is 

determined by the sign of 𝑓(𝑥) defined by 

𝑓(𝑥) = 𝜔 ∙ 𝑥 + 𝑏  (5)          

By margin maximization criterion, a hyperplane is 

determined uniquely and described by the support 

vectors, i.e. the nearest data to the hyperplane. The 

solution to this hyperplane is formulated by 

minimize      
1

2
‖𝜔‖

2
+ C ∑ 𝜉𝑖𝑖    (6) 

  s. t.  yi(𝜔𝑥𝑖 + 𝑏) ≥ 1 − 𝜉𝑖 ,   𝜉𝑖 > ∀𝑖    (7) 

where 𝜉𝑖  is a slack variable, and the value of C 

corresponds to the size of penalty which is imposed 

when the value is against the constraints. To solve this 

problem, (6) is deformed to (8) using Lagrange 

multipliers 𝛼𝑖, 

𝐿𝐷 = ∑ 𝛼𝑖
𝑙
𝑖=1 −

1

2
∑ ∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝑥𝑖 ∙ 𝑥𝑗)𝑙

𝑗=1
𝑙
𝑖=1    (8) 

s.t. 0 ≤ αi ≤ 𝐶, ∑ 𝛼𝑖𝑦𝑖 = 0𝑖                  (9) 

From the comparison between expressions in (5) and 

(8), ω is regarded as the left-hand side of 

ω = ∑ 𝑦𝑖𝛼𝑖𝑥𝑖
𝑁𝑠
𝑖=1          (10) 

where 𝑁𝑠  is the number of support vector. By 

substituting (10), equation (5) is deformed as 

𝑓(𝑥) = ∑ 𝑦𝑖𝛼𝑖(𝑥 ∙ 𝑥𝑖)
𝑁𝑠
𝑖=1 + 𝑏        (11) 

Then, the inner product (𝑥 ∙ 𝑥𝑖) is substituted for the 

symmetrical kernel function 𝐾(𝑥 ∙ 𝑥𝑖). This approach is 

known as the kernel trick. This replacement is 

equivalent to the inner product after the implicit 

mapping ϕ(𝑥), as shown in 

𝐾(𝑥 ∙ 𝑥𝑖) = ϕ(𝑥) ∙ ϕ(𝑥𝑖)      (12) 

Here the explicit form of ϕ(𝑥) is not required in the 

calculation of 𝐾(𝑥 ∙ 𝑥𝑖).  

By replacing (𝑥 ∙ 𝑥𝑖) with 𝐾(𝑥 ∙ 𝑥𝑖), equation (11) 

is reformed to  

𝑆(𝑥) = ∑ 𝑦𝑖𝛼𝑖𝐾(𝑥 ∙ 𝑥𝑖)
𝑁𝑠
𝑖=1 + 𝑏       (13) 

Then non-linear discriminant function 𝑆(𝑥)  is 

determined. In this study, the radial basis function 

(RBF) kernel was used. 

𝐾(𝑥 ∙ 𝑥𝑖) = exp (−𝛾‖𝑥 − 𝑥𝑖‖
2)      (14) 

Here the parameter of RBF kernel and the parameter of 

C-SVM is related to the large effects on the 

classification results. Parameters γ and C were 

optimized using grid search. The search area was [0.001, 

1000]. Leave-one-out method was used to estimate the 

accuracy. Then we determined the combination of C and 

γ as the values minimize the classification accuracy.  

2.2 Effect of individual phase or phase frequency 

difference to environment 

2.2.1 Participants and procedures 

 In addition, 5 healthy young people (age: 24-28 years 

old; 5 male) participated in the experiment. All healthy 

young participants walked following the rhythmic 

auditory cue, which was provided after first 20 s. In 

step-sound condition, auditory cue is provided when 

foot contact was detected. In slow-tempo, similar-tempo, 

and fast-tempo conditions, the mean value of first 5 

stride intervals of both legs (maximum and minimum 

value were eliminated.) was calculated as baseline, and 

rhythmic cue tempo was set to 70%, 100%, or 130%. 

Each trial contains over 120 strides, and first 20 strides 

and last 10 strides were not analyzed to eliminate the 

transient phase. 

2.1.3 Data acquisition and statistical analysis 

Foot contact timings were sensed by the same system 

as described in 2.1.2.  

The subject’s stride interval 𝑢ℎ(𝑡) is described in (1). 

This equation is also applicable to rhythmic cues, after 

replacing the suffix h (for human) with cue (for cue).  

  CV and  of stride interval are used to evaluate the 

individual gait dynamics. To check whether gait rhythm 

can be entrained to cue rhythm, we calculate the mean 

value of each participant’s stride interval.  

  To confirm the relationship between gait rhythm 

phase and cue rhythm phase, circular variance V can be 

calculated by following Eqs. (15)-(17) [14].  

  ∆𝜃𝑖 = {𝑡𝑐𝑢𝑒(𝑖) − 𝑡ℎ(𝑖)}
2𝜋

𝑢ℎ(𝑖)
    (15) 

𝑅𝑒𝑖𝜃 =
1

𝑁
∑ 𝑒𝑖∆𝜃𝑗

j = 〈𝑒𝑖∆𝜃𝑗〉   (16) 

𝑉 = 1 − 𝑅      (0 ≤ 𝑉 ≤ 1)   (17) 

where ∆𝜃𝑗  is the j-th phase difference between j-th 

human foot contact and j-th auditory cue (𝑗 = 1, … , 𝑁), 

and N is the data length. V can quantify the relationship 
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between human gait rhythm and cue rhythm, and it 

estimate the entrainment between human foot steps and 

rhythmic cue. The larger the circular variance V is, the 

smaller the value R is, and vice versa. 

3. RESULTS AND DISCUSSION 

3.1 Results of classification of severity of movement 

disorder as an individual control disorder 

At first, we classify the patients into PI and no-PI. 

Figure 1 shows the result of grid search to find 

optimized parameter pairs of C and γ. The best error rate 

was 25% at combination of C=1, and γ=1. Figure 2 

shows the result of the classification of presence or 

absence of PI in the plane configured by CV and α. The 

accuracy was 74%.  

Then we classify the patients with PI into obvious-PI 

and mild-PI. Figure 3 shows the result of grid search to 

find optimized parameter pair of C and γ in 

classification between obvious-PI and mild-PI. The best 

error rate with the smallest value 23% at optimized 

combination of C and γ was C=1, γ=0.1. Figure 4 shows 

the result of the classification of severity difference of 

PI in the plane configured by CV and α. The accuracy 

was 77%.  

These results suggest that the combination of CV and 

α can differentiate between PI and no-PI, and between 

obvious-PI and mild-PI using nonlinear method. 

However, there are misclassification, and the reason 

may be due to the overlap between the two classified 

distributions. It is possible to improve the classification 

accuracy by adding new features.  

3.2 Effect of self-paced walking or paced walking on 

individual gait dynamics 

Samples of stride interval data of healthy young 

person were shown in Fig. 5. CV in step-sound 

condition (Fig. 5A) was the same as similar-tempo 

condition (Fig. 5B). However, α in step-sound condition 

was higher than similar-tempo condition. The circular 

variance of phase difference was relatively small.  

Table 2 shows the results of the experiment of healthy 

young participants’ walking with rhythmic auditory cue. 

Mean stride interval in slow-tempo and similar-tempo 

condition were different from step-sound condition. 

However, phase difference in step-sound condition was 
 

 
Fig.1 Performance of SVM in classification of presence 

or absence of postural instability. The colors represent 

the error rate of classification. 

 
Fig.2 Result of SVM on the plane configured by CV and 

α. The colors of markers show the group label of the 

data for training; red: no-PI, light green: PI (postural 

instability). Shape of marker shows whether the data is 

support vector or not; circle: support vector, triangle: 

others. Background color shows the predicted label of 

the tested data (green = 0: no-PI, white = 1: PI).  

 

 
Fig.3 Performance of SVM in classification between 

mild and obvious postural instability. The colors 

represent the error rate of classification. 

 

 
Fig.4 Result of SVM on the plane configured by CV and 

α. The color of markers show the group label of the data 

for training (red: mild-PI, light green: obvious-PI). 

Shape of marker shows whether the data is support 

vector or not; circle: support vector, triangle: others. 

Background color shows the predicted label of the 

tested data (green = 0: mild-PI, white = 1: obvious-PI).  
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Fig.5 Samples of stride interval and phase difference 

distribution of healthy young person. 

 

Table 2. Comparison of stride interval and phase 

difference between step-sound and fixed-tempo 

conditions (n=5). 

 
Step 

sound 

Slow 

tempo 

Similar 

tempo 

Fast 

tempo 
P 

Mean 

[s] 
1.13 1.87* 1.50* 1.11 <0.01 

CV [%] 2.8 4.0 2.6 2.9 0.34 

α 0.88 0.50* 0.45* 0.51* 0.04 

Circular 

variance 
0 0.33* 0.21* 0.25* 0.03 

*: statistical difference from step-sound condition 

(significant level: p<0.05, Holm’s adjustment method were 

used). †: statistical different tendency from step-sound 

condition (significant level: p<0.10, Holm’s adjustment 

method were used). p - values were based on Kruskal-Wallis 

rank sum test. 

 

obviously different from other conditions. Significant 

difference of CV among 4 conditions was not observed 

but α in step-sound condition was significantly different 

from other conditions. This suggests that α can be 

related to the distribution of phase difference.  

  These results were for healthy young people. Healthy 

young people’s gait dynamics is different from PD 

patients or elderly people [4]. However, Hove et al. 

reported that 1/f fluctuation property, which is related to 

long term persistence, were reinstated by interactive 

rhythmic auditory stimulation (RAS), not by 

fixed-tempo RAS [6]. Circular variance of phase 

difference between step and cue is converged rapidly by 

interaction between human rhythm and cue rhythm. 

Therefore, the interactivity between human and 

environment might be essential for considering 

rehabilitation methodology.  

Consequently, the combination of CV and α has a 

potential to evaluate movement disorders or 

rehabilitation using sensorimotor interaction. 
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