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 Abstract – We have developed Walk-Mate (WM) training 

using interactive rhythmic auditory cue, which is a new 

rehabilitation method focused on gait rhythm. Also, we have 

proposed the new evaluation method for gait rhythm generation 

disorders, which is occasionally observed in Parkinson’s disease 

(PD) patients. However, the recovery process by rehabilitation 

focused on gait rhythm was not yet evaluated from a viewpoint 

of gait rhythm generation disorders. In this paper, we aim to 

evaluate the recovery process by rehabilitation focused on gait 

rhythm by evaluation method for gait rhythm generation 

disorders seen in PD patients. For this purpose, we evaluated the 

effect of WM training compared to conventional Rhythmic 

Auditory Stimulation (RAS) training using fixed-tempo rhythmic 

auditory cue. To evaluate the rehabilitation effect, we 

hypothesized a transition probability model of discrete states in 

views of gait rhythm generation disorders. In detail, the state 

transition probability matrices concerning WM training, was 

compared with the probability matrices concerning RAS 

training. Thirty-one PD patients walked for approximately 2 

minutes. We defined the three states concerning gait rhythm 

generation disorders using 62 gait data in previous study. Then 

we made state transition matrices from pre-WM training to post-

WM training, and that from pre-RAS training to post-RAS 

training. The result showed the difference in effect between these 

trainings. Specifically, the WM training showed the better gait 

state transition of the patients in severer states of gait rhythm 

generation disorders, compared to the RAS training. This 

suggests that this transition model is useful to identify the 

appropriate treatment of gait rhythm generation disorders.  

 Index Terms – Walk-Mate, gait rhythm generation disorders, 

state transition probability, Markov chain. 

 

I.  INTRODUCTION 

 Rhythm is important component in gait rehabilitation. We 

have proposed the Walk-Mate (WM) training, which is 

focused on gait rhythm interaction [1]. WM is realized by the 

interactive rhythmic auditory cue, which is mutually entrained 

with human gait rhythm. It was reported that WM reinstates 

the 1/f fluctuation property during and after the training in 

Parkinson’s disease (PD) patients [2,3]. The white noise 

property of gait rhythm is occasionally seen in PD patients 

[4,5]. In contrast, another group has proposed the methods 

using the auditory rhythmic cue based on the enforced 

entrainment. The method is called Rhythmic Auditory 

Stimulation (RAS) training, which is providing patients with 

the fixed-tempo metronome while walking based on the 

enforced entrainment [6]. Although RAS tended to decrease 

the gait rhythm variability in PD patients [7], it is likely to 

enhance the white noise property [5].  

 On the other hand, we have also proposed the evaluation 

method for gait rhythm generation disorders seen in PD 

patients [8]. In reference [8], the discrete three states were 

defined using gait rhythm variability and fluctuation property: 

no-disorder state, mild-disorder state, and obvious-disorder 

state.  It is thought to be important to evaluate the 

rehabilitation focused on the gait rhythm.  

 However, conventionally, the recovery process by gait 

training focused on gait rhythm have not been evaluated from 

a viewpoint of a gait rhythm generation disorders. In this 

study. Therefore, the purpose of this study is to evaluate the 

effect of rehabilitation using rhythmic auditory cue by 

integrating the aforementioned previous studies from a 

viewpoint of gait rhythm generation disorders  [8].  

 To evaluate the rehabilitation focused on gait rhythm, we 

compared the effect of WM with that of RAS. In previous 

studies, many kinds of progressive disease were taken account 

of the temporal development process between states [9-11]. In 

this study, we evaluated the utility of rehabilitation using state 

transition probability model from pre-training to post-training 

using finite-state Markov model. On the basis of reference [8], 

we defined three discrete states of gait rhythm generation 

disorders: asymptomatic state, mild disorder state, and 

disorder state. As an approach, we attempted to evaluate the 

effect of gait training using rhythmic auditory cue as the 

transition process between these states. In detail, we compared 

the state transition probability from pre-WM training to post-

WM with the state transition probability from pre-RAS 

training to post-RAS. 

II.  METHODS 

A. Experimental Design of Rehabilitation focused on Gait 

Rhythm 

 To evaluate the gait rehabilitations focused on gait 

rhythm, we compared the two rehabilitations. One is 

interactive rhythmic auditory cue Walk-Mate training (WM 

training) [1,12]. The other is fixed-tempo Rhythmic Auditory 

Cue training (RAS training) [6]. WM is composed of two 

modules. Module-1 was described by  
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𝜃�̇� = 𝜔𝑚 + 𝐾𝑚sin(𝜃ℎ − 𝜃𝑚).                   (1) 

This is based on the mutual entrainment mechanism [13]. 

 Module-2 was described by  

𝜔�̇� = −𝜇sin{∆𝜃𝑑 − (𝜃ℎ − 𝜃𝑚)}.                (2) 

This module controls the phase difference between human-

foot-contact timing and the auditory-cue-providing timing.  

 These equations and the parameters were tuned 

empirically. In WM training, Km, μ, and Δθd were set to 

synchronize the sound cue with human gait rhythm. In RAS 

training, Km  and μ were set to 0. The initial value of ωm was 

determined by the average stride interval of first four steps.  

 1) Participants 

 Thirty-one PD patients were participated in this 

experiment (13 male and 18 female). Their stages of modified 

Hoehn-Yahr (mH-Y) scale was from 1 to 3. All participants 

were tested while “on” state of antiparkinsonian medication. 

The mean age was 68.8 years and the standard deviation was 

10.0 years. The mean duration disease was 4.7 years and the 

standard deviation was 4.0 years. All participants were 

provided written informed consent in accordance with the 

Declaration of Helsinki. The procedure of this experiment was 

approved by Kanto Central Hospital Ethical Committee.  

 2) Experimental Protocol and Apparatus 

 All participants walked six times. There are about 10 

minutes’ breaks between each trial. The rhythmic auditory 

cues based on entrainment of gait rhythm (WM and RAS) 

were provided using headphones during second walking trial 

and the fifth walking trial. Then, we analyzed the effect of 

training by the relationship between pre-training trial and 

post-training trial. The number of participants who are 

provided with WM first is the same as the number of the 

participants who are provided with RAS first.  

 To measure the real time estimation of foot contact 

timing and to provide auditory rhythmic cue, WM 

implemented in the smartphone (iPhone 5 or iPod touch 5th 

generation (Apple Ltd., U.S.)) was used [1,12]. The device 

was equipped in front of stomach. While walking, tri-axial 

acceleration of trunk was measured by each of devices every 

10ms. Squared L2-norm of tri axial acceleration signal was 

calculated. By detecting the timing of the maximal 

acceleration after the norm falls below a certain threshold for 

20 or more consecutive sample times, the foot contact timing 

were estimated in real time.  

 3) Analysis of Gait Rhythm 

 To analyze the gait rhythm, we measured the acceleration 

of trunk using smartphone (iPod touch 5th generation or 

iPhone 5 (Apple Ltd., U.S.)) was equipped with near L3 

region, which is believed to be close to the center of mass 

during quiet standing [14,15].   

 The norm of acceleration signal was smoothed by a 

moving average method twice [16]. The window size was 

100ms and the cut-off frequency was 2.2 Hz. Then the stride 

intervals were calculated by the time duration between every 

other peaks of the smoothed norm. 

 Stride interval time series was analyzed by two 

indicators. One is coefficient of variation (CV). CV is 

calculated by the standard deviation normalized by the mean 

value. CV is one of the indicator of the variability. CV of 

healthy people’s stride interval is near 2%, and the CV of PD 

patients’ stride interval is around 3%.  

 The other is scaling exponent α, which can be calculated 

by detrended fluctuation analysis (DFA) [17]. This method 

can be used for relatively short data [18]. The α is one of the 

indicator of the fluctuation property. If α is near 0.5, the time 

series is white noise. If α is near 1.0, the time series is 1/f 

noise. 1/f fluctuation property is observed in stride interval of 

healthy young people [19-22]. However, white noise property 

is observed in stride interval of PD patients or some kind of 

neurological disorders [23].  

B. Evaluation of Rehabilitation Focused on Gait Rhythm 

 We evaluate the rehabilitation focused on the gait rhythm 

using transition probability matrices of state concerned with 

gait rhythm generation disorders. We hypothesized that the 

effect of rehabilitation focused on the gait rhythm can be 

modeled by simple Markov chain defined by state concerned 

with gait rhythm generation disorders.  

1)  Markov States Concerned with Gait Rhythm 

Generation Disorders 

 The states of gait rhythm generation disorders are defined 

by the combination of CV and α [8]. The indices are 

associated with the severity of the physical disabilities, such 

as postural reflex disorders. To classify the participants’ state 

of gait rhythm generation disorders, we focused on mH-Y 

score [24]. We used the same data set as in reference [8], and 

the binary tree structure to equalize the prior probability of 

each group in classification into two groups (see Fig. 1).  

 Fisher’s linear discriminant analysis [25] was used for 

classification as shown in Fig. 2. At first, we classified the 

presence or absence of postural reflex disorder (PRD). By the 

two linear discriminant function, asymptomatic state s1 can be 

differentiated from disorder state (case 1 in Fig. 1). The 

boundary between presence and absence of PRD is described 

by 

𝛼 = 50 + 16 × 𝐶𝑉.     (3) 

 Next, we differentiated participants with mild-PRD in 

state s2 from patients with obvious-PRD in state  s3  in PRD 

groups (case 2 in Fig. 1). The boundary between mild-PRD 

and obvious-PRD was described by 

𝛼 = 0.72 − 0.02 × 𝐶𝑉.    (4) 

 The classification method of gait rhythm generation 

disorders was applied to the measured walking trial data. The 

participants’ characteristics of the state in pre-WM were 

shown in Table I. The participants’ characteristics of the state 

in pre-RAS were shown in Table II. The population 

proportion in pre-WM and that in pre-RAS was not 

significantly different (State s1: state s2 : state s3 = 15 : 7 : 9 

in pre-WM. State s1 : state s2 : state s3 = 16 : 8 : 7 in pre-

RAS.). The age and the disease duration were not so different 

in each of the state in pre-training (ps > 0.05).  
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TABLE I 

PARTICIPANTS CHARACTERISTICS OF STATE IN PRE-WM 

State 
Age 

[year] 

Sex (Male : 

Female) 

Disease 

Duration [year] 

mHY (min, 

median, max) 

s1 65 ± 7.0 7:8 4.2 ± 4.0 1, 2, 3 

s2 71 ± 11 2:5 6.8 ± 4.1 1, 2, 3 

s3 72 ± 12 4:5 4.0  ± 3.8 2, 2.5, 3 

 

TABLE II 

PARTICIPANTS CHARACTERISTICS OF STATE IN PRE-RAS 

State 
Age 

[year] 

Sex (Male : 

Female) 

Disease 

Duration [year] 

mHY (min, 

median, max) 

s1 69 ± 10 5:11 4.5 ± 3.8 1, 2, 3 

s2 68 ± 11 5:3 3.6 ± 3.1 1, 2, 3 

s3 69 ± 9.8 3:4 6.7 ± 5.1 1.5, 2, 3 

 

2) State Transition Probability 

 To quantify the effect of WM or that of RAS on the 

individual gait dynamics, the state transition probability 

matrices from pre-training to post-training were calculated to 

evaluate the after effect of WM or RAS on the gait dynamics. 

In previous study, the short term after effect of WM was 

confirmed as improvement of gait rhythm fluctuation property 

[2]. Therefore, we set the cycle length about 30 minutes.  

TABLE III 
DEFINITION OF UTILITY FOR PARKINSON’S DISEASE PATIENTS [11] 

 

 

 

 

 

 

State  Stage  Utility 

s1, s2 mH-Y 1 and mH-Y 2 u1=u2= 0.623 

s3 mH-Y 3 and mH-Y 4 u3= 0.467 

Fig. 3.  A Sample result of gait rhythm data of pre-WM (a, b) and post-

WM(c, d). The figures (a) and (c) show stride interval time series, and the 
figures (b) and (d) show the diffusion plots of stride time. In each of 

diffusion plot, the red line is the original linear regression line of 

fluctuation to box size, and the slope of blue line is the scaling exponent 
α, the result after cutting from the data with larger box size while R2 is 

less than 0.95. 

Fig. 2.  Boundary among the states of gait rhythm generation disorders in 

(CV, α) plane. 

Fig. 1.  Definition of the states of gait rhythm generation disorders. 
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3) Estimation of Stationary Distribution and Utility 

 We hypothesized the state transition process can be 

regarded as simple Markov chain. Under this hypothesis, we 

can estimate the stationary distribution 𝜋𝑠 = [P(s1)   P(s2)   
P(s3)], which is represented by row vector, using equilibrium 

equation (5).  

𝜋𝑠 = 𝜋𝑠𝑃,  s.t. ∑ 𝑃(𝑠𝑖)
3
𝑖=1 = 1,      (5) 

where P was the state transition probability matrix. When 

t(・) represent the transposed matrix, we can calculate the 

result of t(𝜋𝑠) = 𝑡(𝑃) ∙ t(𝜋𝑠) . The eigen vector of 𝑡(𝑃) 
corresponding to eigenvalue “1” was calculated by R version 

2.15.2.  

 To estimate the utility of rehabilitation focused on gait 

rhythm, we determined the utility as referred to reference 

[11]. The utility was determined by the Table III [11]. 

Expected utility in stationary distribution for population was 

estimated by (6) [26]. 

𝑈 = ∑ 𝑢𝑠 × 𝑝𝑠
3
𝑠=1     (6) 

𝑢𝑠  is utility when patients stay at state 𝑠𝑠 , and the 𝑝𝑠  is the 

steady state probability in state 𝑠𝑠.  

III.  RESULTS 

A. Sample of Gait State Transition of Patients with State 𝑠3 

in Pre-training 

 Fig. 3 shows a sample result of gait rhythm in before the 

WM training (pre-WM, upper panels) or after the WM 

training (post-WM, lower panels). The left panels show the 

stride interval time series. The CV in pre-WM was 4.0%, 

located in state s3. In this case, this participant’s gait rhythm 

variability decreased from 4.0% in pre-WM to 1.9% in post-

WM.  The right panels show the diffusion plots, which is the 

results of DFA. The slope of fluctuation to box number 

corresponds to the scaling exponent α. The α was increased 

from 0.74 in pre-WM to 0.95 in post-WM. 

 Fig. 4 shows a sample result set of gait rhythm in before 

the RAS gait training (pre-RAS) and after the RAS gait 

training (post-RAS). The variability was the same level 

among them.  

B. State Transition from pre-training to post-training 

 The state transition probability matrices of WM and that 

of RAS were shown in Table IV and Table V, respectively. 

For instance, the transition probability from state s1  in pre-

WM to state s2 in post-WM was estimated by the number of 

people who transfer from state s3  in pre-WM to state s1  in 

post-WM (five) divided by the number of participants who is 

classified to state s1  in pre-WM (nine). The transition 

probability from state s1 in pre-WM to state s2  in post-WM 

was 22%.  

 Fig. 5 is the state transition diagram from pre-WM to 

post-WM, and Fig. 6 is the state transition diagram from pre-

RAS to post-RAS. Comparing the result of the state transition 

probability (0.44) from state s3 in pre-WM to other states in 

post-WM with that (0.28) from state s3 in pre-RAS to other 

states in post-RAS, it is suggested that the participants of state 

s3 in pre-WM improved their individual gait dynamics more 

than that of state s3 in pre-RAS.  

C. Estimation of Stationary Distribution and Utility 

 From the state transition probability matrices of WM, the 

stationary distribution was shown in (6).  

𝜋𝑊𝑀
𝑠 = [𝑃(s1)  𝑃(s2)   𝑃(s3)] = [0.83  0.03  0.14].  (6) 

 From this result, we can estimate the general expected 

utility in steady state by (7).  

 

 

Fig. 4 A Sample result of gait rhythm data of pre-RAS (a, b) and post-

RAS (c, d). The figures (a) and (c) show stride interval time series, and 

the figures (b) and (d) show the diffusion plots of stride time. In each of 

diffusion plot, the red line is the original linear regression line of 
fluctuation to box size, and the slope of blue line is the scaling exponent 

α, the result after cutting from the data with larger box size while R2 is 

less than 0.95.  
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𝑈 = ∑ 𝑢𝑖 × 𝑃(𝑠𝑖)
3
𝑠=1   

= 0.623 × 0.83 + 0.623 × 0.03 + 0.467 × 0.14 

=0.60.            (7) 

 On the other hand, the stationary distribution for the state 

transition matrices for RAS was shown in (8).  

𝜋𝑅𝐴𝑆
𝑠 = [𝑃(s1)  𝑃(s2)   𝑃(s3)] = [0.49  0.09  0.42].  (8) 

 From this result, we can estimate the general expected 

utility in steady state by (9).  

𝑈 = ∑ 𝑢𝑖 × 𝑃(𝑠𝑖)
3
𝑖=1   

= 0.623 × 0.49 + 0.623 × 0.09 + 0.467 × 0.42 

=0.56.            (9) 

 Compared Eqn. (7) with Eqn. (9), the expected utility of 

WM in steady state is slightly higher than that of RAS.  
 

TABLE IV 

STATE TRANSITION PROBABILITY MATRIX FROM PRE-WM TO POST-WM 

   To   

  s1 s2 s3 

 s1 0.93 0.00 0.07 

From  s2 0.88 0.00 0.13 

 s3 0.22 0.22 0.56 

 
TABLE V 

STATE TRANSITION PROBABILITY MATRIX FROM PRE-RAS TO POST-RAS 

   To   

  s1 s2 s3 

 s1 0.77 0.05 0.18 

From  s2 0.50 0.00 0.50 

 s3 0.14 0.14 0.71 

 
Fig. 5 State transition probability diagram from pre-WM to post-WM. 

 
Fig. 6 State transition probability diagram from pre-RAS to post-RAS. 

IV. DISCUSSION 

 In this paper, we compared the effect of WM and RAS 

training by state transition probability, to evaluate 

rehabilitation focused on gait rhythm using state of gait 

rhythm generation disorders. We classified PD patients into 

asymptomatic state s1 , mild disorder state s2  and disorder 

state s3 , and regarded the recovery process by gait training 

using rhythmic auditory cue as a state transition process 

concerned with gait rhythm generation disorders.  

 As a result, the state transition probability (0.08) from 

state s1 in pre-WM to other states in post-WM was lower than 

that (0.08) from state s1 in pre-RAS to other states in post-

RAS. In addition, the state transition probability (0.44) from 

state s3  in pre-WM to other states in post-WM was higher 

than that (0.28) from state s3  in pre-RAS to other states in 

post-RAS. These results suggested that WM training might be 

effective for patients increase the state transition probability 

from any state to asymptomatic state s1. Actually, under the 

hypothesis of simple Markov chain, the stationary distribution 

for state transition probability of WM is biased to 

asymptomatic state s1. In addition, the expected utility of WM 

in steady state is also higher than that of RAS. These result 

suggested that WM has possibility to provide PD patients with 

the high quality life.  

 In this study, we modeled the recovery process by 

rehabilitation focused on gait rhythm using stochastic state 

transition model. This method can quantify the temporal 

development of recovery process and this can be used to 

predict the effectiveness of rehabilitation method focused on 

gait rhythm [10,11,26].  

 For future study, the intra-individual variation of the state 

transition concerned with gait rhythm generation disorders in 

long period should be validated. Then the prediction of the 

progression of the disease and utility evaluation of 

longitudinal rehabilitation focused on gait rhythm is expected.  
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