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Abstract. In agreement with Bond’s suggestion, we consider that episodic 
memories are hierarchized autonomously by simple rule. In this research, our 
model solves maze tasks. Each episodic memory corresponds to the model’s 
each track. In our previous research, we suggested that our model concatenates 
episodic memories into one long episodic memory. Our previous model showed 
successful prediction of any long periodical and deterministic environmental 
changes with editing (selecting and concatenating with adequate timing) stored 
episodic memories autonomously. However, the previous models could not se-
lect adequate actions under a stochastic environment like POMDPs. Here, we 
suggest hierarchical episodic memories implement into the model. It is shown 
that the model improved not only their action under POMDPs but also predic-
tion of long-term environmental change and incremental learning. 
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1 Introduction 

As Tulving [1] described, one of properties for episodic memory is temporal organi-
zation. From theoretical demand on a neural representation of episodic memories, 
Bond [2] claimed that since the number of events in one episodic memory is limited, 
episodic memories form hierarchies. Eichenbaum et al. [3] positioned rat’s place cells 
as semantic memories and these are built from episodic experiences. Our former re-
search demonstrated this process in a mathematical model [4]. Furthermore, it is well-
known that activities of place cells are hierarchical according to the rat’s experiences 
(e.g. [5][6][7]). Therefore, we agree with Bond’s hierarchical property of episodic 
memories [2]. 

Rats can learn alternative maze task (e.g. [8]) of which the goal changes alterna-
tively between a task A and a task B. We consider that hierarchical episodic memories 
should be constructed autonomously through experiences in order to reason the order 
AB. It is recommended to make a model creating hierarchical episodic memories 
aimed to predict future events that the model may encounter (about episodic future 
thinking and episodic memory, see [9]). 
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In our previous research [10][11], we suggested a model that makes and edits epi-
sodic memories. The unique point in our model was to concatenate stored episodic 
memories into one episodic memory with adequate timing and simple criteria, although 
many other researchers used episodic memories without editing (e.g. [12][13]. And 
also, Nuxoll and Laird [14] reviewed other researchers well and they suggested a mod-
el, which used simple episodic memories and showed possibilities of wide cognitive 
capabilities) or with editing but uses complex criteria (e.g. [15]). Our previous model 
could realize easy calculation by integrating some episodic memories into one episodic 
memory. The model predicted correct timing of task change like the order AB. 

However, since integrated episodic memory spans longer time scale, it was not 
very useful for stochastic environments like Partially Observable Markov Decision 
Processes (POMDPs).  

In this paper, we propose a model constructing hierarchy of episodic memories for 
deterministic and stochastic environments including POMDPs. We show the model 
can predict not only goal location in each maze task but also the order between tasks. 
Moreover, the model chooses reasonable actions in a stochastic environment by utiliz-
ing shorter episode, which is positioned lower in the hierarchy. 

2 Maze Tasks 

Fig. 1a) shows a cross maze task. The model can move forward, right, left, and  
backward. It takes one step. However, if there is a wall, the model does not choose its 
direction. We consider that convergence property would be the same even if the  
model takes wall into account, since the model encodes each episodic memory with 
one neuron that makes possible to calculate same time scale with short-term episodic 
memory as well as long term episode, though it will take more time until the model 
reach the goal. When the model reaches the end of branch, it moves to the start loca-
tion S at the next step. 

 

Fig. 1. a) Cross maze task. Goal is located in one of the route ends, A, B, and C. b) Basic  
structure of the model. 

Although this maze is quite simple, it can realize three kinds of complexities, 
which the model would not know nor solve from the input itself.  

One is “deterministic goal change” that the goal of each task changes deterministi-
cally and periodically. Second is “stochastic route change” that the west branch and 
the north branch in the cross maze exchange each other with some probability at the 
beginning of each task. Third is “incremental goal change” that the period of goal 
change becomes longer and longer according to the model’s learning progress. 
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Here, we do not consider optimal answer from start to goal, but evaluate whether 
the model could predict next goal location. 

2.1 Deterministic Goal Change in the Maze Task 

In order to confirm that our new model with hierarchical episodic memories shows 
the same capability as our previous model, which was without the hierarchical episod-
ic memories [10][11], the new model must solve the same task as our previous ones.  

The model must reach the goal located at the end of the route A as the first task 
(Fig. 1a). Then the location of the goal changes from A to B as the second task. The 
model must find the location of the new goal location which is on the route B as the 
third task. Like this, the goal location changes as task progresses. Moreover, this 
change shows periodic pattern, that is AABAABCABCAACAACBACB per one 
periodic pattern. The model is given such patterns many times. Finally, the model has 
to learn not only each task but also such task change pattern for correct prediction of 
goal locations. 

In this paper, we call a periodic pattern of the goal change as “Task set”. 

2.2 Stochastic Route Change 

It would not make sense if the model tries to predict long-term changes, in case the 
stochastic environment changes but not the deterministic environment. In such a case, 
the model should shift from long-term prediction to short-term prediction. We have 
tested that the model can choose shorter and adequate actions under the POMDPs 
environment. We also assume that goal change is deterministic but branches in the 
maze change probabilistically. The model must extract the deterministic goal change 
from the stochastic environmental change. 

In the task, change of the goal location shows a pattern AAB in Fig.1a. As a sto-
chastic environmental change, we add probabilistic route exchange in this maze task. 
The routes A and C interchange by the probability of 20% at the beginning of each 
task. It is expected that, for instance, the model returns to the crossing intersection and 
chooses the correct route when the model predicts the model’s action would result in 
route A but actual route needs to be C. 

2.3 Incremental Goal Change 

In our previous works [10][11], we showed our model successfully transferred some 
parts of acquired task change patterns to a new pattern. Here, we confirm the same 
capability in our proposed model as well. 

The model learns the goal change pattern ABC and ACB at the first and the second 
stage, then learns AABAABC and AACAACB at the third and the fourth stage,  
finally the model learns AABAABCABCAACAACBACB being the same as that of 
the task which is described in the section 2.1. 
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3 Model with Hierarchical Episodic Memories 

Fig. 1b) depicts an abstracted view of the proposed model integrated with the  
hierarchical episodic memory architecture. The model first chooses a suitable episodic 
memory and keeps it in a working memory module (Fig. 1b). Next, the model  
performs actions directed by the episodic memory kept in the working memory mod-
ule. When the model encounters an unexpected state, the model makes a new episodic 
memory in the working memory module and stores it in the hierarchical episodic 
memory module if it is new episodic memory for the model. Moreover, at that time, 
the model combines two or more episodic memories into one episodic memory if 
needed. They are concatenated into single long memory, and one neuron encodes 
them. We consider this as hierarchization of episodic memories.  

3.1 Encoding Episodic Memory 

After a selection from stored episodic memories (this process will be explained at the 
section 3.3), the model starts to perform actions encoded in the episodic memory. 
When the model encounters an unexpected state, the model stops actions that are 
directed by the selected episodic memory, which is stored temporarily in the working 
memory module (Fig. 1b). At that time, the model makes a new episodic memory in 
the working memory module and decides whether to store it in the hierarchical  
episodic memory module by matching it with stored episodic memories. As an  
episodic memory, the model encodes a time series of states, actions, and reward or 
failure existence. Here, reward is given to the model at each goal location. Failure 
means that the model expected a reward but there is no reward. 

3.2 Learning and Hierarchization of Episodes 

Miyazaki and Kobayashi [16] claimed that no weight is effective to make a rational poli-
cy. We have followed their claim and excitatory connection between episodic memories 
which takes zero-one value. However, we use ten step values from 0 to 10 for inhibitory 
connection. When the model encounters an unexpected state or completes actions until 
the end of the selected episodic memory, learning and hierarchization of episodic memo-
ries happen. Here, we define “performed-E” as an episodic memory. A performed-E 
encodes the model’s track which includes time series of positions and actions, and  
rewards. It corresponds to a selected episodic memory in case the model completes the 
selected episodic memory, or a new episodic memory in case the model encounter an 
unexpected state. In addition, “previous-E” indicates the previous performed-E, and  
“selected-E” indicates the selected episodic memory.  

In learning, the model makes excitatory connection to the performed-E from the 
previous-E. If there is no reward in spite of the prediction according to the selected-E, 
the value of the inhibitory connection to the performed-E from the previous-E  
becomes 10. In other case, if the value of the inhibitory connection has more than 1 
the model subtracts 1 from it. 
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If the performed-E or the previous-E has hierarchy, learning is taken into account 
in all excitatory connections of all the layers between both episodic memories.  
However, in case of inhibitory connection, it is taken into account in all connections 
from all the layers of the previous-E to only the top layer of the performed-E. 

Moreover, the model makes excitatory connections from all the layers of the  
previous-E to the top layer of the selected-E. If there is no reward in spite of the  
prediction according to the selected-E, the value of the inhibitory connection from all 
the layers of the previous-E to the top layer of the selected-E becomes 10. In other 
case, if the value of the inhibitory connection between them has more than 1, the 
model subtracts 1 from it. 

The model stores selected-Es up to 20 episodic memories in the working memory 
module until the model encounters an unexpected state. When the number of stored 
selected-Es exceeds 20, the working memory module refreshes it. In this research, 
hierarchization of episodic memories is realized with integrating continuous past  
selected-Es into one episodic memory, which is stored in the hierarchical episodic 
memory module. They are concatenated into single long memory, and one neuron 
encodes them. Thus, the hierarchization is performed when a failure or an unexpected 
reward occurred. 

Excitatory and inhibitory connections from all the layers of the new episodic  
memory made by the hierarchization, to the top layer of the performed-E are  
constructed with the same rule in the section 3.3. At the hierarchization, the new  
hierarchized episodic memory becomes a performed-E if it ends with an unexpected 
reward. Otherwise, if the hierarchized episodic memory ends with failure, the  
hierarchized episodic memory is reconstructed in only successful episodic memories 
by dividing the last failure episodic memory. Thus, the last failure episodic memory 
becomes the performed-E. 

3.3 Retrieval 

The model chooses one of episodic memories connecting from the performed-E, 
which is stored in the hierarchical episodic memory module and shows the value of 
the inhibitory connection 0, based on number of rewards that each episodic memory 
has. A little of randomness is considered at this retrieval process. 

Notice that the smallest episodic memory is state-action-state triplet. If there is no 
excitatory connection from the performed-E, or if there is no performed-E, the model 
chooses random action and then the model makes the smallest episodic memory as the 
next performed-E. 

When the model cannot reach the goal within 300 decisions (retrievals), the model 
chooses random action. 

4 Results 

In this section, we compere our model implementing hierarchical episodic memory with 
non-hierarchical episodic memory. As non-hierarchal episodic memory, we restrict 
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learning of the model. That is, connections from the previous-E to the performed-E and 
the selected-E, and from the hierarchized episodic memory to the performed-E, are 
limited only the top layer of each episodic memory. Fig. 2 and Fig. 3 show the results of 
the deterministic goal change described in the section 2.1 and 2.3. 

Typical examples of the episodic memories’ making process in the model are 
shown in Fig. 2. The x-axis is the number of decisions that the model chooses as one 
of the stored episodic memories. The y-axis is the index number of the performed-E, 
which means result of the selected-E. The models increased episodic memories, then 
suddenly stopped increasing and started to choose only a few episodic memories. It 
means that the models could predict all of task changes at correct timings. 

Fig. 3 shows the learning curves. The x-axis is the number of Trial sets while the y-
axis is the average number of failures on each 100 agents. In our previous research, 
the model without the hierarchization already realized prediction of long-term goal 
changes. In Fig. 3, we can confirm that the model with the hierarchization also 
learned to predict long-term goal changes even faster than the previous model. More-
over, after the partial pattern learning described in the section 2.3, the model learned 
faster than the model which learned only final pattern described in the section 2.1. 

Figs. 4 to 6 show the results of the stochastic route change (see the section 2.2). 
Fig. 4 shows the typical examples of the episodic memories’ making process in the 
model. The x-axis is the number of decisions that the model chooses as one of the 
stored episodic memories. The y-axis is the index number of the performed-E. The 
models with the hierarchization show slow or no increase in episodic memories (Fig. 
4a), but all the agents without the hierarchization continued to keep increasing (refer 
to Fig. 4b as examples).  

 

Fig. 2. Examples of the performed-E that the model made at the deterministic goal change task 

 

Fig. 3. Learning curves of Deterministic change (see the section 2.1 and 2.3) 
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Fig. 5 shows the learning curves. The x-axis is the number of Trial sets while the y-
axis is the average number of failures on each 100 agents. The suggested model with 
the hierarchization showed better performance than our previous model. These slow 
or no increase in episodic memories (Fig. 4a) and better performance (Fig. 5) comes 
from the model’s selection of episodic memories limited to some episodes. 

Fig. 6 shows typical examples. The model with the hierarchization came to be li-
mited to some episodic memories. Especially, in Fig.6 a2), we can see that the model 
divided the environment into 4 episodic memories. Then the model could limit the 
number of selected-Es (Fig. 6 a3).  

 

Fig. 4. Examples of Stochastic Route Change. a) is with the hierarchization. b) is without it. 

 

Fig. 5. Learning curves of Stochastic Route Change (see the section 2.2). The solid line shows 
with the hierarchization and the dashed line shows without the hierarchization. 

5 Discussion 

Recently, episodic future thinking [9] and episodic memory make attentions rapidly 
from many researchers. They consider episodes are necessary for future thinking. 
Although there is a deep relationship between both, its mechanism is still unknown. 
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Fig. 6. Examples of the performed-E, Previous episode connected to the next selected-E, and 
the selected-E in the stochastic route change.  a1-a3) are with the hierarchization, and b1-b3) 
are without the hierarchization. See also the section 2.2. 

Nuxoll and Laird [14] tried to generalize episodic memory by implementing it in 
AI agent. They integrated their episodic memory module within the Soar cognitive 
architecture [17]. Because Soar is a general cognitive architecture that has been used 
to a variety of tasks, Nuxoll and Laird’s model has a large possibility that various 
subjects will improve by episodic memory. However, as they claim, their model could 
not predict long-term environmental changes like task changes. We consider that 
simple addition of episodic memory is not enough. 

In this paper, we have showed that our improved model with the hierarchization of 
episodic memories could predict long-term environmental change, realize incremental 
learning, and select adequate actions under POMDPs. It is expected that the same 
mechanism including editing and hierarchizing episodic memory is an underlying 
factor for the prediction of future events. 
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